Optimizing a Paraprofessional, Family Partner Navigation Model for Children
优化儿童辅助专业人员、家庭合作伙伴导航模型
基本信息
- 批准号:10210234
- 负责人:
- 金额:$ 82.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAgeAttention deficit hyperactivity disorderAttitudeCaringChildChildhoodClinicCollaborationsCommunitiesCommunity HealthComplexComputerized Medical RecordConsumptionDataDiseaseEffectivenessEnhancement TechnologyEthnic OriginExperimental DesignsFaceFamilyFederally Qualified Health CenterFutureHIVHealth ServicesHealth Services AccessibilityHomeHome visitationImprove AccessIndividualInformation NetworksInsuranceInterventionLanguageLow incomeMalignant NeoplasmsMeasuresMediator of activation proteinMental HealthMental Health ServicesMental disordersMethodsModelingMonitorMotivationOnline SystemsOregonOutcomeOutcome StudyPatient EducationPersonsPopulationPrimary Health CareProblem SolvingProtocols documentationRaceRandomizedResearchResourcesSchoolsSeveritiesStructureSymptomsSystemTechnologyTestingTimeTransportationautism spectrum disorderbasebehavioral healthcare coordinationcare deliverycare systemschronic care modelcostcost effectivedesigndisparity reductioneffectiveness evaluationeffectiveness testingevidence basefamily supporthealth knowledgeimplementation strategyinnovationinstrumentmeetingsmotivational enhancement therapymulti-component interventionmultiphase optimization strategynovel strategiespatient portalprimary outcomepublic health interventionresponsescreeningsocial stigmasuccesstelehealththeories
项目摘要
PROJECT SUMMARY
Two decades of evidence support the effectiveness of family navigation (FN) as a care-management approach
to reducing disparities in access to health services for disorders; despite substantial promise, widespread
dissemination of FN still faces significant challenges. FN is a complex, multi-component intervention that
generally incorporates motivational interviewing, problem-solving strategies, patient education, and care
coordination. Each of these components can be delivered through a range of strategies including in-person
meetings, telehealth, home visits, and/or web-based technologies. Our team’s research strongly supports FN’s
effectiveness as a whole; however, three questions remain: 1) what are the most effective delivery strategies
for FN; 2) which FN components are the “active ingredients;” and 3) how can FN be disseminated to a broad
population. In the current proposal, FN will be will be delivered by a Family Partner and deployed to improve
access to behavioral health services among children ages 3-12 years. Our study will be carried out at a large
federally qualified health center within a newly formed Accountable Care Organization. For this project, we
propose to optimize FN for dissemination at scale. First, using the Multiphase Optimization Strategy
(MOST), which relies on a randomized, multi-factorial design, we will simultaneously test the effectiveness of
three novel strategies for delivering FN components: (A) technology-assisted delivery of care coordination
using an innovative, web-based platform; (B) community-based; and (C) enhanced symptom tracking using
evidence-based screening instruments (compared to standard pediatric surveillance). Second, using path
analysis, we will test mediators and moderators of FN outcomes. Third, using a mixed-methods approach, we
will study factors that influence implementation. Integration of our three aims will yield a FN model that is
optimized for efficiency, effectiveness, and wider implementation. Our specific aims are: (1) To evaluate the
effectiveness of three strategies to deliver FN components. We will use a 2 x 2 x 2 factorial experimental
design to test three strategies to deliver FN components. Families (n=304) will be randomized to one of eight
conditions. We will estimate main effects of the three experimental factors and the additive effects of
combinations of factors on the study’s primary outcome – engagement in appropriate mental health services. (2)
To evaluate mechanisms of FN effectiveness and for whom it is most effective. (3) To Optimize FN for
dissemination and evaluate implementation strategies. Following Aarons’ scaling-out framework, we will
use mixed methods to explore barriers and facilitators to implementation by evaluating fidelity (to intervention
and implementation), reach, and cost. Then, working with our team of stakeholders, we will integrate these
findings with data from Aim 1 and 2 to optimize FN based on effectiveness, identified mediators and
moderators, and implementation success.
项目概要
二十年的证据支持家庭导航(FN)作为护理管理方法的有效性
尽管有很大希望,但普遍存在减少获得疾病卫生服务的差距;
FN 的传播仍然面临重大挑战。 FN 是一项复杂的、多方面的干预措施。
通常包括动机性访谈、问题解决策略、患者教育和护理
这些组成部分中的每一个都可以通过一系列策略来实现,包括面对面的策略。
我们团队的研究强烈支持 FN 的会议、远程医疗、家访和/或基于网络的技术。
整体有效性;然而,仍然存在三个问题:1)什么是最有效的交付策略
对于 FN;2) 哪些 FN 成分是“活性成分”;以及 3) 如何将 FN 传播到更广泛的范围
在当前的提案中,FN 将由家庭合作伙伴提供并部署以改善人口。
我们的研究将在 3-12 岁儿童中进行大规模的行为健康服务。
对于这个项目,我们在新成立的责任医疗组织内拥有联邦资格的健康中心。
建议优化 FN 以进行大规模传播。首先,使用多阶段优化策略。
(MOST),它依赖于随机、多因素设计,我们将同时测试以下方法的有效性:
提供 FN 组成部分的三种新策略: (A) 技术辅助的护理协调提供
使用基于网络的创新平台;(B) 基于社区;以及 (C) 使用增强的症状跟踪;
基于证据的筛查工具(与标准儿科监测相比) 其次,使用路径。
分析中,我们将测试 FN 结果的中介变量和调节变量。第三,我们使用混合方法。
将研究影响实施的因素 整合我们的三个目标将产生一个 FN 模型:
我们的具体目标是: (1) 评估
提供 FN 组件的三种策略的有效性我们将使用 2 x 2 x 2 阶乘实验。
旨在测试三种提供 FN 组件的策略的设计将被随机分配到八个家庭之一。
我们将估计三个实验因素的主效应和附加效应。
影响研究主要结果的因素组合——参与适当的心理健康服务 (2)。
(3) 优化FN
遵循 Aarons 的扩展框架,我们将进行传播和评估策略的实施。
使用混合方法通过评估保真度(干预措施)来探索实施的障碍和促进因素
然后,与我们的利益相关者团队合作,我们将整合这些。
根据目标 1 和 2 的数据得出结果,根据有效性、确定的中介因素和确定的因素来优化 FN
主持人,并成功实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMILY FEINBERG其他文献
EMILY FEINBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMILY FEINBERG', 18)}}的其他基金
Collaborative Care Model for Perinatal Depression Support Services -- Population-Level Equity-Centered Systems Change (COMPASS-PLUS): A Hybrid Type 2 Cluster Randomized Trial
围产期抑郁症支持服务协作护理模式——以人口水平公平为中心的系统变革 (COMPASS-PLUS):混合 2 型集群随机试验
- 批准号:
10835287 - 财政年份:2023
- 资助金额:
$ 82.44万 - 项目类别:
Improving Preschool Outcomes by Addressing Maternal Depression in Head Start
通过提前解决母亲抑郁症问题来改善学前教育成果
- 批准号:
10543380 - 财政年份:2022
- 资助金额:
$ 82.44万 - 项目类别:
Improving Preschool Outcomes by Addressing Maternal Depression in Head Start
通过提前解决母亲抑郁症问题来改善学前教育成果
- 批准号:
10083218 - 财政年份:2020
- 资助金额:
$ 82.44万 - 项目类别:
Improving Preschool Outcomes by Addressing Maternal Depression in Head Start
通过提前解决母亲抑郁症问题来改善学前教育成果
- 批准号:
9884948 - 财政年份:2020
- 资助金额:
$ 82.44万 - 项目类别:
Optimizing a Paraprofessional, Family Partner Navigation Model for Children
优化儿童辅助专业人员、家庭合作伙伴导航模型
- 批准号:
10409572 - 财政年份:2018
- 资助金额:
$ 82.44万 - 项目类别:
Early identification and service linkage for urban children with autism
城市自闭症儿童早期识别与服务联动
- 批准号:
8756338 - 财政年份:2014
- 资助金额:
$ 82.44万 - 项目类别:
Early identification and service linkage for urban children with autism
城市自闭症儿童早期识别与服务联动
- 批准号:
9305159 - 财政年份:2014
- 资助金额:
$ 82.44万 - 项目类别:
Early Identification and Service Linkage for Urban Children with Autism
城市自闭症儿童早期识别与服务联动
- 批准号:
9075681 - 财政年份:2014
- 资助金额:
$ 82.44万 - 项目类别:
Reducing Disparities in Timely Autism Diagnosis through Family Navigation
通过家庭导航减少自闭症及时诊断的差异
- 批准号:
8490793 - 财政年份:2013
- 资助金额:
$ 82.44万 - 项目类别:
Pevention of Depression among Mothers of Young Children with Developmental Delay
发育迟缓幼儿母亲抑郁症的预防
- 批准号:
7627184 - 财政年份:2007
- 资助金额:
$ 82.44万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
- 批准号:82373570
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Investigating interference-control in ADHD using a novel forced-response method
使用新颖的强制响应方法研究 ADHD 的干扰控制
- 批准号:
10591920 - 财政年份:2023
- 资助金额:
$ 82.44万 - 项目类别:
The Impact of School Meal Delivery on Behavioral Disorders among Children in Health Disparity Populations
学校供餐对健康差异人群中儿童行为障碍的影响
- 批准号:
10728640 - 财政年份:2023
- 资助金额:
$ 82.44万 - 项目类别:
Identifying Safe Stimulant Prescribing Practices to Protect Patients, Inform Key Program Initiatives, and Assist Providers
确定安全的兴奋剂处方实践以保护患者、为关键计划举措提供信息并协助提供者
- 批准号:
10534426 - 财政年份:2023
- 资助金额:
$ 82.44万 - 项目类别:
Leveraging artificial intelligence to develop novel tools for studying infant brain development
利用人工智能开发研究婴儿大脑发育的新工具
- 批准号:
10302034 - 财政年份:2021
- 资助金额:
$ 82.44万 - 项目类别:
Supporting the implementation of a state policy on screening for Adverse Childhood Experiences (ACEs) in Federally Qualified Health Centers
支持在联邦合格的健康中心实施关于不良童年经历 (ACE) 筛查的国家政策
- 批准号:
10218629 - 财政年份:2021
- 资助金额:
$ 82.44万 - 项目类别: