Microbial and Host Factors that Promote Epithelial Disruption and S. pneumoniae Transit out of the Lung
促进上皮破坏和肺炎链球菌从肺中转运的微生物和宿主因素
基本信息
- 批准号:10207216
- 负责人:
- 金额:$ 14.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherens JunctionAdhesionsAmino AcidsBacteremiaBacteriaBiological AssayBiological ModelsBloodBlood CirculationCD47 geneCell Adhesion MoleculesCell PolarityCell-Cell AdhesionCellsChemotactic FactorsChimera organismClostridium perfringens theta-toxinComputer softwareConfocal MicroscopyDevelopmentDiseaseE-CadherinEffector CellEpithelialEpithelial CellsExcisionFamilyFinancial HardshipFluorescent Antibody TechniqueGoalsHealthImageImage AnalysisImmune responseIn VitroInfectionIntegration Host FactorsIntercellular JunctionsLeadLeukocytesLungLung infectionsMeasuresMediatingMicrobiological TechniquesMigration AssayMolecular BiologyOutcomePathogenesisPatient-Focused OutcomesPatientsPeptide HydrolasesPneumococcal PneumoniaPneumoniaProcessProteinsReactive Oxygen SpeciesResearchRespiratory Tract InfectionsRoleSignal PathwayStainsStatistical Data InterpretationStreptococcus pneumoniaeStreptococcus pneumoniae plY proteinSystemTight JunctionsToxinVirulence FactorsWorkafadincell motilitycombatdesignexperimental studyin vivoinhibitor/antagonistjunctional adhesion moleculemicrobialmicrobial hostmigrationmonolayermortalitynectinneutrophilnovel therapeuticsoccludinpreventquantitative imagingrecruitrespiratory pathogen
项目摘要
Project Summary
Streptococcus pneumoniae causes ~900,000 cases of pneumococcal pneumonia annually in the US, with a
mortality rate of 5-7%, making this disease a major health and financial burden. S. pneumoniae lung infections can
spread to the bloodstream (bacteremia) and lead to severe patient outcomes. The goal of the proposed research
is to elucidate the microbial (Aim 1) and host (Aim 2) factors that enable this bacterium to transit from the lung to
the blood, an ability that is critical for many respiratory pathogens to cause disseminated infection. An important
virulence factor during S. pneumoniae infection is pneumolysin (PLY), a pore forming toxin, which has been
implicated in the development of bacteremia. S. pneumoniae infections are also characterized by an excessive
immune response mediated primarily by white blood cells called polymorphonuclear cells (PMNs) that can cause
host damage and result in lethal infection. Our overall hypothesis is that PLY and PMN migration disrupt the lung
epithelium, promoting bacterial transit from the lung into the bloodstream.
We will investigate this hypothesis by using an in vitro transepithelial migration assay, which allows us to assess
how bacteria transit across the lung epithelium, analogous to bacterial dissemination from the lungs into the
bloodstream in vivo. This versatile system models diverse microenvironments, is easy to maintain, and integrates
seamlessly with other molecular biology and microbiology techniques. In Aim 1 we will determine how PLY disrupts
intercellular junctions of the lung epithelium and how that promotes S. pneumoniae transit out of the lungs
independent of PMNs. To assess PLY-mediated removal of intercellular junction proteins, we will infect polarized
lung epithelial monolayers with PLY-proficient (WT) or PLY-deficient isogenic bacterial strains, stain intercellular
junction proteins with fluorescent antibodies, image the monolayers by confocal microscopy, and use Image J and
Prism software to perform quantitative image and statistical analysis, respectively. In parallel, we will quantify S.
pneumoniae transit across lung epithelial monolayers to connect PLY-mediated disruptions of intercellular junctions
to changes in bacterial migration in the absence of PMNs.
In Aim 2 we will identify how PMNs disrupt intercellular junctions of the lung epithelium and how this perturbation
promotes S. pneumoniae transit out of the lungs. To evaluate PMN-mediated removal of intercellular junction
proteins, we will infect polarized lung epithelial monolayers with WT S. pneumoniae in the presence or absence of
PMNs, stain intercellular junction proteins with fluorescent antibodies, image the monolayers by confocal
microscopy, and use Image J and Prism software to perform quantitative image and statistical analysis,
respectively. In parallel with these experiments, we will measure S. pneumoniae transit across the lung epithelial
monolayers to connect PMN-mediated monolayer disruptions with changes in bacterial migration. Collectively,
these experiments will explain how microbial and host factors disrupt the lung epithelium, leading to bacterial
dissemination, a fundamental process in S. pneumoniae pathogenesis and other lung infections.
项目概要
在美国,肺炎链球菌每年引起约 900,000 例肺炎球菌肺炎病例,其中
死亡率为5-7%,使这种疾病成为重大的健康和经济负担。肺炎链球菌肺部感染可
扩散到血液(菌血症)并导致严重的患者后果。拟议研究的目标
目的是阐明使该细菌能够从肺部转移到肺部的微生物(目标 1)和宿主(目标 2)因素。
血液,这种能力对于许多呼吸道病原体引起播散性感染至关重要。一个重要的
肺炎链球菌感染期间的毒力因子是肺炎链球菌溶血素(PLY),一种成孔毒素,已被
与菌血症的发展有关。肺炎链球菌感染的另一个特点是过度
主要由称为多形核细胞 (PMN) 的白细胞介导的免疫反应,可导致
宿主受损并导致致命的感染。我们的总体假设是 PLY 和 PMN 迁移会破坏肺部
上皮细胞,促进细菌从肺部进入血液。
我们将通过使用体外跨上皮迁移测定来研究这一假设,这使我们能够评估
细菌如何穿过肺上皮,类似于细菌从肺部传播到肺部
体内的血液。这种多功能系统可以对不同的微环境进行建模,易于维护并集成
与其他分子生物学和微生物学技术无缝结合。在目标 1 中,我们将确定 PLY 如何颠覆
肺上皮细胞间连接及其如何促进肺炎链球菌从肺部转运
独立于 PMN。为了评估 PLY 介导的细胞间连接蛋白去除,我们将感染极化
具有 PLY 丰富 (WT) 或 PLY 缺陷等基因细菌菌株的肺上皮单层,细胞间染色
连接蛋白与荧光抗体,通过共焦显微镜对单层进行成像,并使用 Image J 和
Prism 软件分别执行定量图像和统计分析。同时,我们将量化 S。
肺炎杆菌穿过肺上皮单层连接 PLY 介导的细胞间连接破坏
在没有 PMN 的情况下细菌迁移的变化。
在目标 2 中,我们将确定中性粒细胞如何破坏肺上皮的细胞间连接以及这种扰动如何
促进肺炎链球菌从肺部排出。评估 PMN 介导的细胞间连接去除
蛋白质,我们将在存在或不存在的情况下用 WT 肺炎链球菌感染极化的肺上皮单层
PMN,用荧光抗体染色细胞间连接蛋白,通过共聚焦对单层进行成像
显微镜,并使用Image J和Prism软件进行定量图像和统计分析,
分别。与这些实验并行,我们将测量肺炎链球菌穿过肺上皮的情况
单层细胞将 PMN 介导的单层细胞破坏与细菌迁移的变化联系起来。总的来说,
这些实验将解释微生物和宿主因素如何破坏肺上皮,导致细菌
传播是肺炎链球菌发病机制和其他肺部感染的基本过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Walter Isaiah Adams其他文献
Walter Isaiah Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Walter Isaiah Adams', 18)}}的其他基金
Microbial and Host Factors that Promote Epithelial Disruption and S. pneumoniae Transit out of the Lung
促进上皮破坏和肺炎链球菌从肺中转运的微生物和宿主因素
- 批准号:
10596529 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Microbial and Host Factors that Promote Epithelial Disruption and S. pneumoniae Transit out of the Lung
促进上皮破坏和肺炎链球菌从肺中转运的微生物和宿主因素
- 批准号:
10370434 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 14.65万 - 项目类别:
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 14.65万 - 项目类别:
Mechanisms of KSHV-induced endothelial cell loss of contact inhibition of proliferation
KSHV诱导内皮细胞失去接触抑制增殖的机制
- 批准号:
10762813 - 财政年份:2023
- 资助金额:
$ 14.65万 - 项目类别:
Investigation of Armadillo/ß-catenin Mechanisms Influencing Nociceptive Sensitivity in Drosophila
影响果蝇伤害感受敏感性的犰狳/α-连环蛋白机制的研究
- 批准号:
10653377 - 财政年份:2023
- 资助金额:
$ 14.65万 - 项目类别: