Regulating Microtubule Severing Physically and Chemically
物理和化学调控微管切断
基本信息
- 批准号:10202821
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBindingBiochemistryBiological AssayBiological ProcessBiologyBiophysicsBrainCell Division ProcessCell divisionCell physiologyCellsChemicalsCiliaCodeComplexCytoskeletonDataDefectDevelopmentDimerizationEngineeringEnvironmentEnzymesFamilyFilamentFluorescence MicroscopyGenetic RecombinationGoalsHealthHuman bodyImaging TechniquesIn VitroInterdisciplinary StudyInvestigationKidneyKnowledgeLeadLightLinkLiverLocationMaintenanceMeiosisMicrotubule-Associated ProteinsMicrotubulesMissionModificationMolecularMorphogenesisNomenclatureOrganPeer ReviewPhosphorylationPolymersPositioning AttributePost-Translational Protein ProcessingProblem SolvingProcessPublicationsRegulationReproducibilityResearch PersonnelSchemeScienceSerineTailTechniquesTestingTimeTissuesTrainingTraining ActivityTubulinUniversitiesWorkbasecell motilityciliopathydensitydimerexperimental studyinnovationkataninlight microscopymonomerneuron developmentnext generationnovelphysical scienceproteostasisreconstitutionrepairedsingle moleculeskillssmall molecule inhibitortoolundergraduate student
项目摘要
Project Summary/Abstract
The goal of this new proposal application is to uncover the physical and chemical regulatory schemes
to control the microtubule severing enzyme, katanin. Katanin is a AAA+ enzyme that hexamerizes in
order to remove tubulin diimers from the microtubule filament resulting in filament severing. When at
high levels, and unregulated in cells, katanin can destroy the entire microtubule network, thus turning
it off is an essential control knob. Overactivity of katanin can lead to complete loss of microtubule
polymer, but underactivity is linked with developmental defects in the brain and ciliopathies. The
central hypothesis of the proposed work is that the mechanisms to control katanin actually regulate
katanin hexamer oligomerization. Our prior work indicated that oligomerization is the a rate-limiting
step for katanin. We seek to use quantitative fluorescence microscopy to directly test the hypothesis
that oligomerization controls severing through physical and chemical means. Specifically, we will
explore the regulation of katanin concentration in live cells using a novel light-sensitive dimerization
domain to drive katanin concentration locally by exploring the following aims: (1) Quantification of
both the katanin concentration and the microtubule filament density as a function of time will enable
biochemistry in the cell for the first time for katanin. (2) Using in vitro reconstitution of microtubule
severing and a novel single molecule counting technique, we will examine the effect of the
phosphorylation state of serine 131 on binding, oligomerization, and severing by katanin. (3) The
tubulin carboxy-terminal tail has been shown to act as a code to control many microtubule-associated
proteins and enzymes. Severing enzymes are no different and are known to require the carboxy-
terminal tail to sever microtubules. Our preliminary data shows that katanin’s regulation is distinct
from other severing enzymes. We will use a severing inhibition assay and single molecule counting to
quantify the ability to katanin to bind and act on microtubules of various carboxy-terminal tail
sequences.
Accomplishing the proposed aims will create a novel microtubule disruption tool that could be used in
a variety of cellular and organismal assays to control the location and density of the microtubule
network. Further, the proposed studies will reveal new information on how microtubule severing can
be regulated in cells through controlling the katanin oligomerization state. This crucial step for katanin
activity may be an entry-point for creating small molecule inhibitors for microtubule severing enzymes
and other AAA+ enzymes that are important for a host of essential cellular functions including protein
homeostasis, DNA recombination, replication, and repair.
项目摘要/摘要
这项新建议申请的目的是发现物理和化学调节方案
为了控制微管几种酶,katanin。 Katanin是一种AAA+酶,六聚体
为了从微管丝中去除微管蛋白二聚体,导致丝几个。何时
高水平且在细胞中不受管制,Katanin可以破坏整个微管网络,从而转动
它是一个必不可少的控制旋钮。 Katanin的过度活动性会导致微管完全丧失
聚合物,但不足的活动与大脑和纤毛病中的发育缺陷有关。
提议的工作的中心假设是控制Katanin的机制实际上受调节
katanin己酸酯寡聚化。我们先前的工作表明,低聚是限制速率
Katanin的一步。我们寻求使用定量荧光显微镜直接检验假设
这种低聚通过物理和化学方法控制第六。具体来说,我们会的
使用新型的光敏二聚化探索活细胞中Katanin浓度的调节
通过探索以下目的来驱动Katanin浓度的域:(1)定量
Katanin浓度和微管丝密度随时间的函数都将实现
Katanin首次在细胞中的生物化学。 (2)使用微管的体外重构
切断和一种新颖的单分子计数技术,我们将研究
丝氨酸131的磷酸化状态在结合,寡聚化和Katanin上的磷酸化状态。 (3)
微管蛋白羧基末端尾部已被证明是控制许多微管相关的代码
蛋白质和酶。切断的酶没有什么不同,已知需要羧基
末端尾部至微管。我们的初步数据表明,Katanin的监管是不同的
来自其他切断的酶。我们将使用切断的抑制测定法和单分子计数
量化Katanin结合并作用于各种羧基末端尾的微管的能力
序列。
完成提议的目标将创建一个新颖的微管破坏工具
各种细胞和有机纹状体控制微管的位置和密度
网络。此外,拟议的研究将揭示有关微管断开如何切断的新信息
通过控制Katanin寡聚状态在细胞中受到调节。 Katanin的关键步骤
活性可能是为微管切断酶创建小分子抑制剂的入口点
以及其他对于包括蛋白质(蛋白质)的大量必需细胞功能很重要的AAA+酶
稳态,DNA重组,复制和修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER L ROSS其他文献
JENNIFER L ROSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER L ROSS', 18)}}的其他基金
Regulating Microtubule Severing Physically and Chemically
物理和化学调控微管切断
- 批准号:
10580392 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Regulating Microtubule Severing Physically and Chemically
物理和化学调控微管切断
- 批准号:
10797126 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Direct Observation of Dynein Motility Using Biophysics
利用生物物理学直接观察动力蛋白运动
- 批准号:
7192509 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Direct Observation of Dynein Motility Using Biophysics
利用生物物理学直接观察动力蛋白运动
- 批准号:
6994090 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
- 批准号:82301632
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
- 批准号:82303568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别: