Exploring the role of mitochondria in dysregulated calcium handling in diseased hearts
探索线粒体在患病心脏钙处理失调中的作用
基本信息
- 批准号:10202296
- 负责人:
- 金额:$ 42.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsArrhythmiaBiochemicalBiological AssayBuffersCalciumCardiacCatecholaminergic Polymorphic Ventricular TachycardiaCause of DeathCell DeathCell physiologyCellsChronicComplexDataDefectDevelopmentDiseaseDisease modelFosteringFoundationsFunctional disorderFutureGenerationsGeneticGenetic ModelsGoalsHeartHeart AbnormalitiesHeart DiseasesHeart failureHomeostasisImageInterventionKnowledgeLifeLinkLiteratureMediatingMembrane PotentialsMetabolicMetabolic DiseasesMethodsMitochondriaMolecularMusMuscle CellsMutationOutcomePathologicPathologyPharmaceutical PreparationsPhenotypePhosphorylationPhysiologicalPlayPrediabetes syndromeProductionProtein BiochemistryProteinsResearchRoleRyanodine Receptor Calcium Release ChannelRyanodine ReceptorsSarcoplasmic ReticulumShapesSignal TransductionStructureSyndromeTechniquesTestingTranslatingUnited Statesbasecalmodulin-dependent protein kinase IIcareerdiabetic cardiomyopathydisease phenotypegenetic approachheart functionheart rhythmin vivoindividualized medicineinsightmitochondrial permeability transition poremouse modelnovelnovel therapeuticsoxidationtranslational studyundergraduate student
项目摘要
Cardiac disease remains the leading cause of death in the United States. Altered Ca release from the
sarcoplasmic reticulum (SR) due to genetic and acquired defects in Ca release channels, ryanodine receptors
(RyR2s), are thought to underlie a spectrum of devastating cardiac disorders, ranging from arrhythmias to heart
failure. RyR2 dysfunction, mainly manifested as an abnormally active (i.e. leaky) channel, leads to aberrant Ca
release (ACR). However, while the key role of ACR in contributing to various disease states is established, it
remains unclear as to why and how the same underlying defect, i.e. aberrant Ca release, results in different
pathological phenotypes in different disease settings. For instance, ACR causes cardiac arrhythmias without
pathological remodeling in catecholaminergic polymorphic ventricular tachycardia (CPVT), a life-threatening
genetic arrhythmia syndrome. In contrast, ACR is associated with both pathological remodeling and arrhythmias
in a metabolic disease model of pre-diabetic cardiomyopathy (pre-DC). This divergence of outcomes suggests
that factors in addition to leaky RyR2s are critical for translating aberrant RyR2 Ca release to a particular disease
state, however there is a gap in knowledge regarding the connection between abnormal myocyte Ca handling
and cardiac disease. Mitochondria sense intracellular Ca signals to mediate energy production and also cell
death. Recently, the interplay between SR and mitochondria has emerged as an important factor in the
development of different cardiac pathologies. Preliminary results from this study suggest that this interplay
shapes/impacts pathological phenotypes in settings of two distinct cardiac diseases: CPVT and pre-DC. Based
on these results as well as data in the literature, it is hypothesized that the interplay between SR and
mitochondria contributes to Ca-dependent cardiac disease phenotypes by modulating/shaping intracellular Ca
signals. To test this hypothesis, multiscale studies (from molecule to whole animal) that employ novel genetic
mice models and utilize methods of cellular physiology and protein biochemistry, along with in vivo cardiac
functional assays, are proposed. The overall goal of this study is to engage undergraduate students to: 1) define
the molecular players and factors that determine the specific manner as to how mitochondria respond to ACR to
shape intracellular Ca dynamics and contribute to cardiac pathologies in CPVT vs pre-DC settings, and 2) utilize
genetic approaches to explore the effect of directly modulating mitochondria Ca on cardiac pathology in both
disease settings. The proposed research is significant because it will greatly advance the understanding of SR-
mitochondria Ca signaling in the setting of CPVT and pre-DC, and thus foster the development of mechanism-
based therapies for these devastating cardiac diseases. It will also act as a foundation for future translational
studies to provide tailored therapies for subtypes of Ca-dependent cardiac disease. Moreover, this project will
provide undergraduate students with numerous opportunities to participate in research, thus fully preparing them
for scientific or biomedical related careers.
心脏病仍然是美国的主要死亡原因。 CA释放的改变
肌质网(SR)由于遗传和获得的缺陷在Ca释放通道中,瑞氨烷受体中的缺陷
(RYR2)被认为是一系列毁灭性心脏疾病的基础,从心律不齐到心脏
失败。 RYR2功能障碍,主要表现为异常活跃(即泄漏)通道,导致异常CA
释放(ACR)。但是,尽管建立了ACR在促进各种疾病状态的关键作用,但
尚不清楚为什么以及如何以及如何使用相同的基础缺陷,即异常CA释放,导致不同
不同疾病环境中的病理表型。例如,ACR导致心律不齐没有
儿茶酚胺能多态性心动过速(CPVT)中的病理重塑,这是一种威胁生命的
遗传心律不齐综合征。相反,ACR与病理重塑和心律不齐有关
在糖尿病前心肌病(DC)的代谢疾病模型中。结果的分歧表明
除泄漏的RYR2之外,这些因素对于将异常的RYR2 CA释放到特定疾病至关重要
状态,但是关于异常肌细胞处理之间的联系的知识差距存在差距
和心脏病。线粒体感知细胞内Ca信号以介导能量产生和细胞
死亡。最近,SR和线粒体之间的相互作用已成为
开发不同的心脏病理。这项研究的初步结果表明此相互作用
在两种不同的心脏病的设置中,形状/影响病理表型:CPVT和PERED-DC。基于
关于这些结果以及文献中的数据,假设SR和SR之间的相互作用
线粒体通过调节/塑造细胞内CA来促进CA依赖性心脏病表型
信号。为了检验这一假设,多尺度研究(从分子到整个动物)采用了新的遗传
小鼠模型并利用细胞生理学和蛋白质生物化学的方法以及体内心脏
提出了功能测定。这项研究的总体目标是让本科生参与:1)定义
确定线粒体如何对ACR响应ACR的特定方式的分子参与者和因素
塑造细胞内CA动力学,并有助于CPVT与DC PREDC设置中的心脏病理,并且2)使用
探索直接调节线粒体CA对心脏病理的影响的遗传方法
疾病环境。拟议的研究很重要,因为它将大大提高对SR-的理解
线粒体CA信号在CPVT和DC的设置中,从而促进了机理的发展
这些毁灭性心脏病的基于疗法。它也将成为未来翻译的基础
研究为CA依赖性心脏病的亚型提供量身定制的疗法。而且,这个项目将
为本科生提供许多参与研究的机会,从而为他们做好充分的准备
用于科学或生物医学有关的职业。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic Inhibition of Mitochondrial Permeability Transition Pore Exacerbates Ryanodine Receptor 2 Dysfunction in Arrhythmic Disease.
- DOI:10.3390/cells12020204
- 发表时间:2023-01-04
- 期刊:
- 影响因子:6
- 作者:
- 通讯作者:
SR-Mitochondria Crosstalk Shapes Ca Signalling to Impact Pathophenotype in Disease Models Marked by Dysregulated Intracellular Ca Release.
- DOI:10.1093/cvr/cvab324
- 发表时间:2022-10-21
- 期刊:
- 影响因子:10.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Liu其他文献
Bin Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Liu', 18)}}的其他基金
Broad spectrum β-lactamase inhibitors employing a Trojan horse mechanism to rescue β-lactams against multidrug-resistant Pseudomonas aeruginosa
广谱β-内酰胺酶抑制剂采用特洛伊木马机制来拯救β-内酰胺对抗多重耐药铜绿假单胞菌
- 批准号:
10482577 - 财政年份:2022
- 资助金额:
$ 42.27万 - 项目类别:
Broad spectrum β-lactamase inhibitors employing a Trojan horse mechanism to rescue β-lactams against multidrug-resistant Pseudomonas aeruginosa
广谱β-内酰胺酶抑制剂采用特洛伊木马机制来拯救β-内酰胺对抗多重耐药铜绿假单胞菌
- 批准号:
10588165 - 财政年份:2022
- 资助金额:
$ 42.27万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sodium channel mutations as a possible cause for primary dysautonomia
钠通道突变可能是原发性自主神经功能障碍的原因
- 批准号:
10586393 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
Novel patient biomarkers and mechanisms of TKI associated Cardiotoxicity
TKI 相关心脏毒性的新型患者生物标志物和机制
- 批准号:
10728954 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
Cardiac Autonomic Activation In Atrial Fibrillation Triggers And Substrate
心房颤动的心脏自主激活触发因素和基质
- 批准号:
10636441 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
Non-invasive imaging of reactive oxygen species in reperfusion injury myocardial infarction
再灌注损伤心肌梗死中活性氧的无创成像
- 批准号:
10716836 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
CaMKII and Endothelial SK Channel Function in Diabetic Coronary Microcirculation
CaMKII 和内皮 SK 通道在糖尿病冠状动脉微循环中的功能
- 批准号:
10930197 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别: