Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
基本信息
- 批准号:10197182
- 负责人:
- 金额:$ 10.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-17 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmic AnalysisAmniotic FluidAnatomyAutomationBrainBrain imagingCalibrationChildhoodClinicalClinical ResearchClinical assessmentsData SetDevelopmentDiagnosticEcho-Planar ImagingFetal DevelopmentFetusGeometryGoalsHeadImageIndividualLabelLeadLearningMagnetic Resonance ImagingManualsMasksMeasuresMorphologic artifactsMotionNeurosciencesPatientsPhasePhysicsPhysiologic pulsePopulationPositioning AttributeRadialRecording of previous eventsResearchResidual stateResolutionSamplingScanningScientistSignal TransductionSliceSpeedTechnologyThickThree-Dimensional ImagingTimeTissuesTrainingTraining ProgramsTranslatingUltrasonographyUpdateWorkbaseclinical investigationconvolutional neural networkcostdeep learningecho detectionexperiencefetalimage archival systemimprovedinnovationinterestneuroimagingnovelprospectiveradiologistreconstructionrepairedresearch studyresponseskillssuccesstooltwo-dimensional
项目摘要
PROJECT SUMMARY/ABSTRACT
Fetal-brain magnetic resonance imaging (MRI) has become an invaluable tool for studying the early development
of the brain and can resolve diagnostic ambiguities that may remain after routine ultrasound exams.
Unfortunately, high levels of fetal and maternal motion (1) limit fetal MRI to rapid two-dimensional (2D) sequences
and frequently introduce dramatic artifacts such as (2) image misorientation relative to the standard sagittal,
coronal, axial planes needed for clinical assessment and (3) partial to complete signal loss.
These factors lead to the inefficient practice of repeating ~30 s stack-of-slices acquisitions until motion-free
images have been obtained. Throughout the session, technologists manually adjust the orientation of scans in
response to motion, and about 38% of datasets are typically discarded. Thus, subject motion is the fundamental
impediment to reaping the full benefits of MRI for answering clinical and investigational questions in the fetus.
The overarching goal of this project is to overcome the challenges posed by motion by exploiting innovations in
deep learning, which have enabled image-analysis algorithms with unprecedented speed and reliability. We
propose to integrate these into the MRI acquisition pipeline to unlock the potential of fetal MRI. We will develop
practical pulse-sequence technology for automated and dynamically motion-corrected fetal neuroimaging
without the need for external hardware or calibration. We hypothesize that this will radically improve the quality
and success rates of clinical and research studies, while dramatically reducing patient discomfort and cost.
We propose as Aim 1 to eradicate (2) the vulnerability of acquisitions to image-brain misorientation with rapid,
automated prescription of standard anatomical planes. In Aim 2, we propose to address (3) motion during the
scan with real-time correction of fetal-head motion. An anatomical stack-of-slices acquisition will be interleaved
with volumetric navigators. These will be used to measure motion as it happens in the scanner and to adaptively
update the slice tilt/position. We propose as Aim 3 to develop a 3D radial sequence and estimate motion between
subsets of radial spokes for real-time self-navigation. Adaptively updating the orientation of spokes and
selectively re-acquiring corrupted subsets at the end of the scan will enable 3D imaging of the fetal brain (1).
Since the applicant has a physics background, the proposed training program at MIT and HMS will focus on
deep learning and fetal development/neuroscience during the K99 phase to develop the skills needed for
transitioning to independence in the R00 phase. The applicant’s goal is to become a fetal image acquisition and
analysis scientist acting as bridge between deep learning, MRI and clinical fetal-imaging applications to shift the
boundaries of what is currently possible with state-of-the-art technology. Fulfilling the research aims will promote
this, as it will result in a practical framework for automation and motion correction, applicable to a wide variety of
fetal neuroimaging sequences.
项目概要/摘要
胎儿脑磁共振成像(MRI)已成为研究早期发育的宝贵工具
大脑的,可以解决常规超声检查后可能残留的诊断模糊性。
不幸的是,胎儿和母亲的高水平运动 (1) 将胎儿 MRI 限制为快速二维 (2D) 序列
并经常引入戏剧性的伪影,例如 (2) 相对于标准矢状面的图像定向错误,
临床评估所需的冠状面、轴向面以及(3)部分至完全信号丢失。
这些因素导致重复约 30 秒的切片堆栈采集直到无运动的低效实践
在整个过程中,技术人员手动调整扫描方向。
对运动的响应,大约 38% 的数据集通常被丢弃,因此,主体运动是基础。
阻碍充分利用 MRI 来回答胎儿的临床和研究问题。
该项目的总体目标是通过利用创新来克服运动带来的挑战
深度学习使图像分析算法具有前所未有的速度和可靠性。
建议将这些集成到 MRI 采集管道中,以释放胎儿 MRI 的潜力。
用于自动化和动态运动校正胎儿神经成像的实用脉冲序列技术
无需外部硬件或校准,我们努力希望这将从根本上提高质量。
和临床和研究的成功率,同时大大减少患者的不适和成本。
我们建议目标 1 是通过快速、
标准解剖平面的自动处方 在目标 2 中,我们建议解决 (3) 运动过程中的问题。
实时校正胎儿头部运动的扫描将交错进行解剖堆叠切片采集。
这些将用于测量扫描仪中发生的运动并自适应地进行测量。
我们建议目标 3 开发 3D 径向序列并估计之间的运动。
用于实时自我导航的径向辐条子集和自适应更新辐条的方向。
在扫描结束时选择性地重新获取损坏的子集将能够对胎儿大脑进行 3D 成像 (1)。
由于申请人具有物理学背景,因此在麻省理工学院和 HMS 拟议的培训计划将侧重于
K99 阶段的深度学习和胎儿发育/神经科学,以培养所需的技能
在R00阶段过渡到独立,申请人的目标是成为胎儿图像采集和处理人员。
分析科学家充当深度学习、MRI 和临床胎儿成像应用之间的桥梁,以改变
目前最先进技术的可能性边界将促进实现研究目标。
这将产生一个实用的自动化和运动校正框架,适用于各种领域
胎儿神经影像序列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malte Hoffmann其他文献
Malte Hoffmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malte Hoffmann', 18)}}的其他基金
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
- 批准号:
10545512 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
- 批准号:
10756678 - 财政年份:2020
- 资助金额:
$ 10.97万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
- 批准号:
10482499 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
- 批准号:
10615864 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
Fast motion-robust fetal neuroimaging with MRI
使用 MRI 进行快速运动稳健的胎儿神经成像
- 批准号:
10545512 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别:
3D Image Analysis Software for Breast Reconstruction Surgical Planning, Outcome Assessment & Clinical Consultation
用于乳房重建手术规划、结果评估的 3D 图像分析软件
- 批准号:
10484568 - 财政年份:2022
- 资助金额:
$ 10.97万 - 项目类别: