Selectively Replicating Trojan Virus Vectors as Programmable CRISPR-Based Antiviral Therapies
选择性复制特洛伊病毒载体作为基于 CRISPR 的可编程抗病毒疗法
基本信息
- 批准号:10196367
- 负责人:
- 金额:$ 61.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVActive SitesAnimal ModelAnimalsAntiviral AgentsAntiviral TherapyAreaBiological ModelsBiologyCOVID-19COVID-19 pandemicCOVID-19 therapeuticsCOVID-19 treatmentCRISPR therapeuticsCell modelCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunicable DiseasesCoronavirusDevelopmentDiseaseDisease OutbreaksEbolaEconomicsEffectivenessEngineeringFoundationsFutureGenomeGenome ComponentsGenome engineeringGoalsHepatitisHumanImmuneImmunityIndividualInfluenzaInterventionInvadedLaboratoriesMethodsMusNatureNucleic AcidsPathogenicityPatientsPopulationPre-Clinical ModelProtein EngineeringProteinsRNA InterferenceRegulationResearchResistanceResourcesRibonucleasesSARS coronavirusSARS-CoV-2 antiviralSARS-CoV-2 infectionSeriesSocietiesStructureSystemTechnologyTestingTherapeuticTimeTissuesVaccine TherapyVaccinesViralViral GenomeViral ProteinsViral VectorVirusVirus DiseasesVirus Replicationacquired immunitybasecombatcoronavirus therapeuticscritical perioddesigneconomic impacteffective therapyfightinggene therapygenome editinghumanized mousein vivoin vivo evaluationinsightinterestmouse modelnovelnovel coronavirusnovel strategiesparticlepathogenpathogenic viruspreventprogramsprotein complexprotein structureresearch clinical testingsmall moleculesocialsuccesstechnology developmenttherapy developmenttooltransmission processvectorviral transmission
项目摘要
PROJECT SUMMARY
The COVID-19 pandemic has highlighted our long-standing vulnerability to new viral infectious diseases with
which there is no acquired immunity. While vaccines and antiviral therapies can eventually be developed to treat
many viral infectious diseases, these interventions require significant time and resources to acquire. This results
in a critical period of time where there are no therapeutic options to slow the spread of the virus, besides physical
countermeasures that have dramatic economic and social consequences. The truly alarming insight is that all
of the vaccines and therapies we develop now against SARS-CoV-2 will be useless against the next cycle of
viral outbreaks (e.g., influenza, ebola, etc.). There is a paramount need to fundamentally transform our approach
to combating emerging viral diseases by developing antiviral strategies that can be rapidly deployed at the onset
of a new viral outbreak. We propose a revolutionary new viral-antiviral technology that has the potential to target
emerging viral pathogens at all stages of the disease outbreak cycle. This includes targeting viral pathogens in
animal hosts prior to human transmission, preventing viral infections in healthy individuals, and treating ongoing
viral infections. This new “Trojan virus” technology uses engineered viral vectors that imitate viral pathogens,
yet contain potent CRISPR antiviral machinery that degrades pathogenic viral particles. These Trojan virus
vectors have an incomplete viral genome that can selectively replicate only in previously infected cells by
hijacking viral derived proteins, which it uses to multiply and spread throughout the infected areas of the body.
The spread of the Trojan virus acts to prevent viral infection in healthy tissue by targeting invading viral particles,
while at the same time suppressing active sites of viral infection. The integration of CRISPR antiviral technology
into Trojan virus vectors allows the system to be reprogrammed to target new viral strains without extensive
protein engineering or clinical testing, facilitating the rapid mobilization of the technology during viral disease
outbreaks. The proposed research will focus on developing SARS-CoV-2 Trojan virus technology as a
therapeutic option for active viral infections. The research will use engineered non-infectious cellular model
systems to evaluate SARS-CoV-2 Trojan virus genome designs that can selectively replicate only in previously
infected cells. We will determine the optimal strategy for incorporating CRISPR antiviral technology into the
SARS-CoV-2 Trojan virus vectors, while identifying key CRISPR vulnerabilities in the SARS-CoV-2 virus. To
validate that the genome engineering principles developed for the SARS-CoV-2 Trojan virus therapy can mitigate
active viral infections, we will duplicate the approach to target the mouse hepatitis coronavirus (MHV-A59),
tracking the effectiveness of the Trojan virus in murine model systems. If successful, our research will generate
a functional SARS-CoV-2 Trojan virus therapy, validating the genome design in preclinical model systems, to
establish the foundation for commercial development of the technology for use in the current and future SARS-
CoV outbreaks.
项目摘要
COVID-19大流行强调了我们长期以来对新病毒感染疾病的脆弱性
没有获得的免疫力。虽然有时可以开发疫苗和抗病毒疗法来治疗
这些病毒感染疾病,这些干预措施需要大量的时间和资源才能获得。这结果
在关键时期,除了物理
具有巨大经济和社会后果的对策。真正令人震惊的见解是
我们现在针对SARS-COV-2开发的疫苗和疗法将无用
病毒爆发(例如,影响力,埃博拉病毒等)。从根本上改变我们的方法有至高无上的需求
通过制定可以在开始时快速部署的抗病毒药策略来打击新兴病毒疾病
新病毒爆发。我们提出了一种革命性的新病毒抗病毒技术,有可能针对
在疾病暴发周期的所有阶段,新兴的病毒病原体。这包括针对病毒病原体
动物宿主在人类传播之前,预防健康个体的病毒感染,并治疗正在进行的
病毒感染。这项新的“特洛伊木马病毒”技术使用了模仿病毒病原体的工程病毒载体,
然而,包含潜在的CRIS抗病毒机制,可降解致病病毒颗粒。这些木马病毒
向量具有不完全的病毒基因组,可以选择性地在先前感染的细胞中选择性地复制
劫持病毒衍生的蛋白质,它用于繁殖并散布在身体的整个感染区域。
木马病毒的扩散可通过靶向入侵病毒颗粒来防止健康组织中的病毒感染,
同时抑制病毒感染的活跃部位。 CRISPR抗病毒技术的整合
进入特洛伊木马病毒载体允许对系统进行重新编程以靶向新的病毒株而无需广泛
蛋白质工程或临床测试,支持病毒疾病期间技术的快速动员
爆发。拟议的研究将着重于开发SARS-COV-2 Trojan病毒技术作为一种
主动病毒感染的治疗选择。该研究将使用工程的非感染性蜂窝模型
评估SARS-COV-2 Trojan病毒基因组设计的系统,这些设计只能在先前选择性地复制
感染细胞。我们将确定将CRISPR抗病毒技术纳入纳入的最佳策略
SARS-COV-2 Trojan病毒载体,同时识别SARS-COV-2病毒中的关键CRISPR脆弱性。到
验证为SARS-COV-2 Trojan病毒疗法开发的基因组工程原理可以减轻
主动病毒感染,我们将复制针对小鼠肝炎冠状病毒(MHV-A59)的方法,
跟踪特洛伊木就在鼠模型系统中的有效性。如果成功,我们的研究将产生
一种功能性SARS-COV-2 Trojan病毒疗法,验证临床前模型系统中的基因组设计
建立该技术的商业开发基础,用于当前和未来的SARS-
COV爆发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Paul Phelps其他文献
Michael Paul Phelps的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New target and new therapy for severe Covid-19 and viral hyperinflammation damage: renalase and renalase agonists
严重Covid-19和病毒性过度炎症损伤的新靶点和新疗法:肾酶和肾酶激动剂
- 批准号:
10759030 - 财政年份:2023
- 资助金额:
$ 61.2万 - 项目类别:
Bi-substrate Inhibitors of SARS-CoV-2 Nsp14 Methyltransferase
SARS-CoV-2 Nsp14 甲基转移酶的双底物抑制剂
- 批准号:
10646346 - 财政年份:2022
- 资助金额:
$ 61.2万 - 项目类别:
Accelerated development of advanced leads against SARS-CoV-2 and other pandemic viruses
加速开发针对 SARS-CoV-2 和其他大流行病毒的先进先导药物
- 批准号:
10513922 - 财政年份:2022
- 资助金额:
$ 61.2万 - 项目类别:
Bi-substrate Inhibitors of SARS-CoV-2 Nsp14 Methyltransferase
SARS-CoV-2 Nsp14 甲基转移酶的双底物抑制剂
- 批准号:
10526232 - 财政年份:2022
- 资助金额:
$ 61.2万 - 项目类别: