Preserving Epithelial Barrier Integrity in Ventilator-Induced Lung Injury
在呼吸机引起的肺损伤中保持上皮屏障的完整性
基本信息
- 批准号:10186793
- 负责人:
- 金额:$ 63.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-10 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcute Lung InjuryAddressAdult Respiratory Distress SyndromeAlveolarAlveolusAnatomyAnimal ModelAppearanceBiological MarkersBiological ModelsBiophysical ProcessBioreactorsBlood gasBronchoalveolar Lavage FluidCell DeathComputer ModelsCritical CareDataDevelopmentDiagnosisDrug TargetingElementsEndotheliumEpithelialEpithelial CellsEventFamily suidaeGoalsHistologyHumanImpairmentIn VitroIndividualInjuryIntensive Care UnitsInterruptionInterventionLeadLifeLiquid substanceLungLung ComplianceMechanical StressMechanical ventilationMechanicsMedicineModelingMusPathogenesisPatientsPerforationPeriodicityPharmacologic SubstancePlasmaPrimary PreventionProcessProteinsRecording of previous eventsRecoveryRegimenResearchRiskStressStretchingStructure of parenchyma of lungStudy modelsSupportive careSurface TensionTechniquesTestingTight JunctionsTimeTissuesTubeVentilator-induced lung injuryVolutraumaairway epitheliumatelectraumaclinically relevantdesignevent cycleimprovedin vivolung injurymonolayermortalitymulti-scale modelingpatient populationpersonalized approachpredictive modelingpreservationpreventpulmonary functionrate of changerecruitrepairedsurfactantsurfactant functiontissue stresstoolventilation
项目摘要
PROJECT SUMMARY
The distressingly high mortality from acute respiratory distress syndrome (ARDS) represents a dramatic loss of
quality human life-years. No medicines have yet been developed that treat ARDS, so management remains
purely supportive as patients are nursed through their illness in a critical care setting. A key component of this
management involves mechanical ventilation. Unfortunately, the stresses and strains of mechanical ventilation
can further damage already injured lung tissues, causing lung compliance to decrease and the stresses and
strains of mechanical ventilation to increase commensurately. This, in turn, worsens tissue damage in a vicious
cycle that is often ultimately fatal. Accordingly, the central premise of this proposal is that managing ARDS
requires, above all else, the minimization of VILI. Our prior studies lead to the over-arching hypothesis that the
development of ARDS occurs only once repetitive recruitment and derecruitment (RecDer) of lung units
initiates an epithelial leak that allows fluid and proteins to begin to accumulate in the airspaces. The
consequences of allowing this process to start are dire; surfactant function becomes impaired, surface tension
and tissue stresses increase, and the leak worsens in a vicious cycle that accelerates indefinitely. Once
underway, this process is difficult to reverse and is exacerbated by over-distension (OD) of the lung tissues,
making its avoidance paramount for patients at risk of developing ARDS. Our goal is to comprehensively test
this hypothesis both in vitro and in vivo in a range of three relevant model systems: 1) using biofluid mechanics
studies we will investigate fundamental interactions that may lead to RecDer, and at the cellular level in vitro
we will determine how both OD of lung tissue and repetitive RecDer of lung airspaces act individually and
synergistically to damage the airway epithelium in epithelial cell monolayers grown on the inside of compliant
tubes subjected to stretch and/or liquid bubble passage, respectively, 2) at the whole lung level in vivo we will
determine how over-distension and RecDer lead to leak of proteinaceous fluid into the lung airspaces and
cause derangements in lung mechanics and 3) we will determine how VILI can be minimized in a clinically
relevant porcine surfactant deactivation model of heterogeneous ARDS subjected to a variety of modes of
mechanical ventilation that apply differing relative degrees of tissue over-distention and RecDer. The data
collected in Aims 1 and 2 will inform the development of a computational model that predicts how VILI
develops over time as a result of the epithelial damage caused by RecDer and the exacerbating influences of
overdistension. The model will be tested under clinically relevant conditions in Aim 3. These studies will
establish the pathophysiologic understanding upon which personalized approaches to mechanical ventilation
that minimize VILI can be developed for individual ARDS patients.
项目摘要
急性呼吸窘迫综合征(ARDS)的令人痛苦的高死亡率代表了巨大的丧失
优质的人类生活年。尚未开发出治疗ARDS的药物,因此管理仍然存在
在重症监护环境中,由于患者的疾病而受到护理,纯粹的支持。一个关键组成部分
管理涉及机械通气。不幸的是,机械通气的应力和应变
可能会进一步损害已经受伤的肺组织,从而导致肺依从性减少和压力和压力
机械通气的菌株相应增加。反过来,这会使组织损伤恶化
循环通常是致命的。因此,该提议的主要前提是管理ARDS
最重要的是,Vili的最小化。我们先前的研究导致了一个超大的假设
ARDS的发展仅发生一次重复招募和肺单位的授予(RECDER)
引发上皮泄漏,该泄漏使流体和蛋白质开始在空域中积聚。这
允许这个过程开始的后果是可怕的。表面活性剂功能受损,表面张力
组织应力增加,泄漏在恶性循环中加剧,无限期加速。一次
正在进行中,这个过程很难逆转,并且因肺组织的过度距离(OD)而加剧
对于有患ARDS的风险的患者,使其避免至高无上。我们的目标是全面测试
该假设在体外和体内均在三个相关模型系统中:1)使用生物流体力学
研究我们将研究可能导致收益的基本相互作用,并在细胞水平上体外
我们将确定肺组织的OD和肺空间的重复性伴侣如何单独起作用
协同损害在符合条件的内部生长的上皮细胞单层中的气道上皮
管道分别受到拉伸和/或液体气泡通道的约束,2)在整个肺水中,我们将
确定过度距离和回收器如何导致蛋白质流体泄漏到肺空间和
原因是肺力学中的危险和3)我们将确定如何在临床上最小化VILI
相关的猪表面活性剂失活模型的异质ARDS受到多种模式
机械通气应用不同的组织相对程度的过度距离和收获。数据
在目标1和2中收集的将告知一个计算模型的开发,该模型可以预测Vili
随着时间的流逝,由于收获者造成的上皮损害和加剧的影响而发展
过度差异。该模型将在AIM 3中的临床相关条件下进行测试。这些研究将
建立对机械通气的个性化方法的病理生理理解
可以为个别ARDS患者开发最小化VILI。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason HT Bates其他文献
Jason HT Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason HT Bates', 18)}}的其他基金
Mathematical and Computational Predictive Modeling Core
数学和计算预测建模核心
- 批准号:
10021010 - 财政年份:2018
- 资助金额:
$ 63.3万 - 项目类别:
Mathematical and Computational Predictive Modeling Core
数学和计算预测建模核心
- 批准号:
10256815 - 财政年份:2018
- 资助金额:
$ 63.3万 - 项目类别:
Non-Allergic Late-Onset Asthma of Obesity: Pathophysiology and Therapy
肥胖引起的非过敏性迟发型哮喘:病理生理学和治疗
- 批准号:
9243305 - 财政年份:2016
- 资助金额:
$ 63.3万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
9026498 - 财政年份:2014
- 资助金额:
$ 63.3万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
9232202 - 财政年份:2014
- 资助金额:
$ 63.3万 - 项目类别:
Personalized Mechanical Ventilation for the Injured Lung
针对受损肺部的个性化机械通气
- 批准号:
8766263 - 财政年份:2014
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8502325 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8135440 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
8322649 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
A multi-scale approach to airway hyperresponsiveness: from molecule to organ
气道高反应性的多尺度方法:从分子到器官
- 批准号:
7932703 - 财政年份:2010
- 资助金额:
$ 63.3万 - 项目类别:
相似国自然基金
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
急性肺损伤中Hippo通路调控肺泡中间过渡态上皮细胞再生分化机制研究
- 批准号:82372185
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
土家药山姜通过调控中性粒细胞胞外捕获网的急性肺损伤保护作用及机制研究
- 批准号:82360846
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于“肠肺轴”探讨迷迭香酸通过调控肠道菌群对LPS致急性肺损伤小鼠的保护作用及其机制
- 批准号:32360897
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肺泡巨噬细胞外泌体miR-122-5p调控肺泡II型上皮细胞自噬在脓毒症急性肺损伤中的作用及机制
- 批准号:82360024
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
MAP2K1 AND MAP2K2 IN ACUTE LUNG INJURY AND RESOLUTION
MAP2K1 和 MAP2K2 在急性肺损伤中的作用及缓解
- 批准号:
10741574 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
2023 Lung Development, Injury and Repair Gordon Research Conference and Gordon Research Seminar
2023年肺发育、损伤与修复戈登研究会议暨戈登研究研讨会
- 批准号:
10683622 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Control of lung alveolar regeneration by Dot1L/H3K79 methylation
通过 Dot1L/H3K79 甲基化控制肺泡再生
- 批准号:
10594734 - 财政年份:2023
- 资助金额:
$ 63.3万 - 项目类别:
Treatment of Inflammatory Complications of Viral Pneumonia
病毒性肺炎炎症并发症的治疗
- 批准号:
10383991 - 财政年份:2022
- 资助金额:
$ 63.3万 - 项目类别: