Proteoglycans and age-related deterioration of bone toughness
蛋白多糖与年龄相关的骨韧性退化
基本信息
- 批准号:10186704
- 负责人:
- 金额:$ 44.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAffectAgeAge FactorsAge-Related Bone LossAgingAnimal ModelBiochemicalBiologicalBiomechanicsBone DensityBone DiseasesBone MatrixBone TissueCadaverCell modelCollagenCollagen FibrilComputer ModelsCrystallizationDeteriorationDevelopmentElementsFibrinogenFractureGAG GeneGenderGlycosaminoglycansGoalsHealthcareHumanHydration statusIn SituIn VitroKnockout MiceLeadMeasuresMechanicsMethodologyMineralsModelingMucopolysaccharidosesMusOrthopedicsOsteoblastsOsteogenesis ImperfectaOsteopeniaOsteoporosisOutcome StudyPathway interactionsPatientsPilot ProjectsPlayPopulationPorosityPremature MortalityPreventionProtein BiochemistryProteinsProteoglycanRaman Spectrum AnalysisRattusResearchResearch PersonnelResolutionRiskRoleSamplingStructureTechniquesTestingThinnessTissue EngineeringTissue ModelTissuesTreatment EfficacyWaterage relatedaging populationbiglycanbonebone cellbone fragilitybone lossbone qualitybone toughnesscohesioncortical bonecrosslinkcrystallinitydecorindisabilityfragility fractureglycationhigh riskimprovedin vitro Modelin vivoinsightmortalitymouse modelnanomechanicsnovel therapeutic interventionsubcutaneoussubstantia spongiosa
项目摘要
PROJECT SUMMARY
Bone fragility fractures are a major concern of health care of our rapidly aging populations due to the high risk of
long-term disability and even premature mortality. Such fractures are not only due to loss of bone mineral density
(BMD), but also due to adverse composition/structural changes at different hierarchies of bone. It is a well-known
fact that bone loses its toughness completely when dehydrated. However, the underlying mechanism is still
elusive. Our preliminary results suggest that proteoglycans (PGs), a sub group of non-collagenous proteins
(NCPs) in bone matrix, play a pivotal role in bone tissue toughness. In addition, our results also reveal that PGs
in bone matrix decreases with aging with the associated deterioration of bone toughness. Moreover, our pilot
study shows that accumulated non-enzymatic glycation decreases PGs and this decrease can be compensated
by delivering GAGs to bone matrix by subdermal administration, thus improving the toughness of bone. To this
end, we hypothesize that (1) PGs contain glycosaminoglycans (GAGs) that attract and retain bound water in
bone matrix, thus regulating the in situ hydration status of bone matrix and subsequently imposing a significant
effect on the toughness of bone. (2) Aging may cause loss of GAGs/PGs in bone matrix, thus leading to
significant deterioration of bone toughness, whereas supplement of GAGs may deter such age-related
deterioration of bone toughness. We proposed two specific aims to address the hypotheses. Aim 1: Determine
the underlying mechanism of GAGs/PGs in toughening of bone. Here, we will use in vitro human cadaveric bone,
in vivo mouse, and computational models to test the hypothesis in three subaims: (1) Determine the role of GAGs
in retaining bound water in bone matrix using an in vitro model. (2) Determine the role of GAGs/PGs in
toughening of bone in vivo using KO mouse models. (3) Verify the mechanistic role of GAGs in toughening bone
using a computational approach. Aim 2: Determine the age-related loss in GAGs/PGs and its contribution to the
age-related deterioration of bone toughness. Here, we will use ex vivo human cadaver bone and in vivo animal
models to test the hypothesis in three subaims: (1) Determine age-related effect of GAGs/PGs on the toughness
of cortical and trabecular bone for both genders using human cadaveric bone samples. (2) Determine the effect
of nonenzymatic glycation on the synthesis of PGs by bone cells using a mouse bone ex vivo model and
osteoblast cell models. (3) Determine the efficacy of supplemental GAGs in deterring age-related loss of GAGs
and maintaining the toughness of bone using an aging rat model. Upon completion of this aim, we expect to
understand the mechanistic role of GAGs/PGs in the age and gender-related deterioration of bone toughness, a
potential pathway of age-related loss of GAGs, and the efficacy of supplementing GAGs in deterring age-related
loss of bone toughness. The outcomes of this study will provide important insights to age-related bone fragility
fractures and facilitate development of new strategies in prediction and prevention of fragility fractures in aged
population.
项目概要
由于骨脆性骨折的高风险,骨脆性骨折是我们快速老龄化人口医疗保健的一个主要问题。
长期残疾甚至过早死亡。这种骨折不仅是由于骨矿物质密度的丧失
(BMD),但也是由于不同骨层次的不良成分/结构变化。这是一个众所周知的
事实上,骨骼脱水时会完全失去韧性。但其根本机制仍然是
难以捉摸。我们的初步结果表明,蛋白多糖(PG)是非胶原蛋白的一个亚类
(NCPs)存在于骨基质中,对骨组织韧性起着关键作用。此外,我们的结果还表明 PG
骨基质随着年龄的增长而减少,并伴随着骨韧性的恶化。此外,我们的飞行员
研究表明,积累的非酶糖化会减少 PG,并且这种减少可以得到补偿
通过皮下注射将GAGs递送至骨基质,从而提高骨的韧性。对此
最后,我们假设 (1) PG 含有糖胺聚糖 (GAG),可以吸引并保留结合水
骨基质,从而调节骨基质的原位水化状态,从而对骨基质产生显着的影响。
对骨骼韧性的影响。 (2)衰老可能导致骨基质中GAGs/PGs的丢失,从而导致
骨骼韧性显着恶化,而补充 GAG 可能会阻止这种与年龄相关的情况
骨骼韧性恶化。我们提出了两个具体目标来解决这些假设。目标 1:确定
GAGs/PGs 强骨的基本机制。在这里,我们将使用体外人体尸体骨,
体内小鼠和计算模型来检验三个子目标的假设:(1)确定 GAG 的作用
使用体外模型将结合水保留在骨基质中。 (2) 确定GAG/PG的作用
使用 KO 小鼠模型进行体内骨骼增韧。 (3) 验证GAGs强骨的机制作用
使用计算方法。目标 2:确定与年龄相关的 GAG/PG 损失及其对
与年龄相关的骨骼韧性退化。在这里,我们将使用离体人类尸体骨和体内动物尸体骨
模型在三个子目标中检验假设:(1)确定 GAG/PG 对韧性的年龄相关影响
使用人类尸体骨样本对两性的皮质骨和小梁骨进行分析。 (2)确定效果
使用小鼠骨离体模型研究非酶糖化对骨细胞合成 PG 的影响
成骨细胞模型。 (3) 确定补充 GAG 在阻止与年龄相关的 GAG 损失方面的功效
并使用衰老大鼠模型维持骨骼的韧性。完成这一目标后,我们期望
了解 GAGs/PGs 在年龄和性别相关的骨韧性恶化中的机制作用,
与年龄相关的 GAG 损失的潜在途径,以及补充 GAG 在阻止年龄相关的 GAG 方面的功效
骨骼韧性丧失。这项研究的结果将为与年龄相关的骨质脆性提供重要见解
骨折并促进开发预测和预防老年人脆性骨折的新策略
人口。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean X Jiang其他文献
Jean X Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean X Jiang', 18)}}的其他基金
Proteoglycans and age-related deterioration of bone toughness
蛋白多糖与年龄相关的骨韧性退化
- 批准号:
10418752 - 财政年份:2019
- 资助金额:
$ 44.52万 - 项目类别:
Proteoglycans and age-related deterioration of bone toughness
蛋白多糖与年龄相关的骨韧性退化
- 批准号:
10644016 - 财政年份:2019
- 资助金额:
$ 44.52万 - 项目类别:
Connexin channels in transducing mechanical signals in bone
连接蛋白通道在骨中转导机械信号
- 批准号:
10213655 - 财政年份:2018
- 资助金额:
$ 44.52万 - 项目类别:
Connexin channels in transducing mechanical signals in bone
连接蛋白通道在骨中转导机械信号
- 批准号:
9754577 - 财政年份:2018
- 资助金额:
$ 44.52万 - 项目类别:
Connexin channels in transducing mechanical signals in bone
连接蛋白通道在骨中转导机械信号
- 批准号:
10447057 - 财政年份:2018
- 资助金额:
$ 44.52万 - 项目类别:
Connexin hemichannels in suppression of breast cancer bone metastasis
连接蛋白半通道抑制乳腺癌骨转移
- 批准号:
9030104 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
Role of mechanical strain in GAP junctions in osteocytes
机械应变在骨细胞间隙连接中的作用
- 批准号:
6583191 - 财政年份:2002
- 资助金额:
$ 44.52万 - 项目类别:
Role of mechanical strain in GAP junctions in osteocytes
机械应变在骨细胞间隙连接中的作用
- 批准号:
6663349 - 财政年份:2002
- 资助金额:
$ 44.52万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Programs for the Training and Advancement of the Next GENeration of Native Researchers in Genetics, Ethics and Society
下一代本土遗传学、伦理学和社会研究人员的培训和提升计划
- 批准号:
10841760 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Developing a U.S. National Cohort to Improve Virologic Suppression among Stimulant-using Men Living with HIV.
建立美国国家队列以改善使用兴奋剂的艾滋病毒男性感染者的病毒抑制。
- 批准号:
10675863 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别: