Multivalent Nano-conjugates for Targeted Penetration of and Delivery to Dense Extracellular Matrices
用于靶向渗透和递送至致密细胞外基质的多价纳米缀合物
基本信息
- 批准号:10179375
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ADAMTSAddressAnatomyAnti-Inflammatory AgentsBindingBiodistributionBiologicalBlood VesselsCartilageCathepsinsCell Culture TechniquesCharacteristicsChargeChemistryConjugated CarrierCorneaDegenerative polyarthritisDepositionDexamethasoneDiagnosticDiseaseDrug CombinationsDrug Delivery SystemsDrug KineticsDrug TargetingElectrostaticsEnzyme-Linked Immunosorbent AssayEnzymesExhibitsExtracellular MatrixExtravasationFamilyFluorescence Resonance Energy TransferFormulationGenerationsGrowth FactorHeartHemolysisHistologyHydrolysisImageImmunohistochemistryIn VitroInflammatoryInflammatory ResponseInsulin-Like Growth Factor IJointsKineticsKnowledgeLabelLibrariesLigamentsLiverLungMaintenanceMatrix MetalloproteinasesMeasuresMedicalMeniscus structure of jointModelingMolecular AnalysisNanoconjugateOperative Surgical ProceduresOrganOryctolagus cuniculusPenetrationPeptide HydrolasesPeptidesPharmaceutical PreparationsPositron-Emission TomographyProcessPropertyRadiolabeledRapid screeningRattusSerumSolid NeoplasmSurfaceSystemTLR4 geneTendon structureTestingTherapeuticTherapeutic EffectTimeTissue ModelTissuesToxic effectToxicologyTranslationsTraumaVascular SystemWorkanimal imaginganimal tissuebasecartilage regenerationcartilage repairchemical functionclinical biomarkerscrosslinkcytokinedensitydesigneffective therapyefficacy evaluationexperimental studyimaging agentimaging facilitiesin vivoinflammatory markerinhibitor/antagonistinterestjoint inflammationnanocarriernanomaterialsnanomedicinenanoparticleparticlerepairedresidencesmall moleculetherapeutic evaluationtraffickingtranscriptome sequencinguptake
项目摘要
Although nanoparticles have been found to be effective in delivery to more traditional vascularized organs and
tissues, there are different challenges for nanoparticle transport in tissues that lack a vascular system to assist
in penetration into the tissue. Here we propose a systematic approach to the design of nanomaterials systems
that are capable of deep penetration and delivery of agents into avascular tissues. The proposed work will focus
on establishing sets of materials design concepts to enhance transport into and through these tissues based on
size, charge density and presentation, targeting and dynamic materials chemistries. In the Aim 1, we will develop
two promising families of multivalent drug nanocarriers with modular design, each presenting unique advantages
for tissue penetration. The transport of these nanocarriers will then be examined as a function of size and charge
using ex vivo tissue models to rapidly screen libraries of nanocarriers and identify optimal size/charge
characteristics for tissues of interest. We will examine transport in three unique avascular tissue types: cartilage,
meniscus and cornea to understand similarities or differences in design requirements and optimal transport
characteristics for a range of avascular tissue types. Further translation of this Aim is anticipated to provide
fundamental knowledge regarding how to address other similar barrier tissues in the context of drug delivery.
Treatment of cartilage to address conditions such as osteoarthritis presents a particularly important medical
challenge, and is the disease focus for the later Aims of these studies; however, successful demonstration of
this system in the first Aim will be applicable to other tissues and conditions, including delivery to the cornea and
joint meniscus. To enable a more tissue-responsive delivery approach, both pH responsive and enzyme
degradable linkers will be examined in Aim 2 for the conjugation of therapeutics, with the focus on conjugation
of IGF-1, a growth factor that can facilitate cartilage regeneration in early stage osteoarthritis. Optimized versions
of the nanocarriers will be studied in an established in vivo using an early surgical trauma rat model to evaluate
the efficacy of IGF-1 treatments with the nondegradable, hydrolytic, and protease-activated degradable linkers
and determine in vivo real-time pharmacokinetics versus free IGF-1. Cartilage treatment studies will be carried
out in this model for IGF-1 delivery. Finally, an additional aspect of this study will be the design of nanoconjugates
that release drug selectively to regions of tissue matched to the different nanocarrier transport properties
determined in earlier Aims, including degree of penetration and residence time within the tissue. Combination
treatments for small molecule drugs including dexamethasone and TLR4 inhibitors will be conjugated to carriers
optimal for each drug, in combination with the top IGF-1 formulation. We will evaluate the therapeutic effects of
the combinations in a cytokine-challenged ex vivo cartilage tissue model by measuring inflammatory markers,
matrix deposition and maintenance, and kinetics of cartilage repair.
1
尽管已经发现纳米颗粒有效地传递到传统的血管化器官和
组织,对于缺乏血管系统的组织中的纳米颗粒传输面临不同的挑战
在渗透到组织中。在这里,我们提出了一种系统的纳米材料系统设计方法
能够深入渗透和将剂传递到血管组织中。拟议的工作将集中
建立一组材料设计概念集,以增强基于这些组织的运输
大小,电荷密度和表现,靶向和动态材料化学。在目标1中,我们将发展
具有模块化设计的两个有前途的多价药物纳米载体家族,每个载体都具有独特的优势
用于组织穿透。然后,将检查这些纳米载体的运输作为大小和电荷的函数
使用离体组织模型快速筛选纳米载体的库,并确定最佳尺寸/电荷
感兴趣的组织的特征。我们将检查三种独特的血管组织类型的运输:软骨,
半月板和角膜以了解设计要求和最佳运输方面的相似性或差异
各种血管组织类型的特征。预计该目标的进一步翻译将提供
关于如何在药物输送的背景下如何解决其他类似屏障组织的基本知识。
软骨治疗以解决诸如骨关节炎等疾病的治疗
挑战,这是这些研究后来目标的重点。但是,成功的演示
第一个目标中的该系统将适用于其他组织和条件,包括交付到角膜和
联合半月板。为了实现更多的组织响应递送方法,pH响应式和酶
将在AIM 2中检查可降解的链接器以进行治疗,重点是共轭
IGF-1的生长因子可以促进早期骨关节炎的软骨再生。优化版本
将使用早期手术创伤大鼠模型在体内研究纳米载体的含量
IGF-1处理的功效,可通过可降解,水解和蛋白酶降解的连接器
并确定体内实时药代动力学与自由IGF-1。软骨治疗研究将进行
在此模型中进行IGF-1传递。最后,这项研究的另一个方面将是纳米缀合物的设计
该药物有选择地释放到与不同纳米载体传输特性匹配的组织区域
在较早的目标中确定,包括在组织内的穿透程度和停留时间。组合
小分子药物在内的治疗包括地塞米松和TLR4抑制剂将与载体偶联
每种药物最佳,结合顶部IGF-1配方。我们将评估
通过测量炎症标记,在细胞因子挑战的离体软骨组织模型中的组合,
基质沉积和维护,以及软骨修复的动力学。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paula T Hammond其他文献
Paula T Hammond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paula T Hammond', 18)}}的其他基金
Multivalent Nano-conjugates for Targeted Penetration of and Delivery to Dense Extracellular Matrices
用于靶向渗透和递送至致密细胞外基质的多价纳米缀合物
- 批准号:
10286340 - 财政年份:2020
- 资助金额:
$ 52万 - 项目类别:
Delivery of cytokines for cancer immunotherapy using nanolayer-controlled trafficking of liposomal nanoparticles
使用纳米层控制的脂质体纳米颗粒运输输送用于癌症免疫治疗的细胞因子
- 批准号:
10663293 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Delivery of cytokines for cancer immunotherapy using nanolayer-controlled trafficking of liposomal nanoparticles
使用纳米层控制的脂质体纳米颗粒运输输送用于癌症免疫治疗的细胞因子
- 批准号:
10430179 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Delivery of cytokines for cancer immunotherapy using nanolayer-controlled trafficking of liposomal nanoparticles
使用纳米层控制的脂质体纳米颗粒运输输送用于癌症免疫治疗的细胞因子
- 批准号:
10187529 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Multivalent Nano-conjugates for Targeted Penetration of and Delivery to Dense Extracellular Matrices
用于靶向渗透和递送至致密细胞外基质的多价纳米缀合物
- 批准号:
10435694 - 财政年份:2018
- 资助金额:
$ 52万 - 项目类别:
2016 Drug Carriers in Medicine & Biology Gordon Research Conferences and Gordon Research Seminar
2016年医学药物载体
- 批准号:
9050829 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
Tunable Nanolayer-Polymer Composite Patches for Cell-Free CMF Repair
用于无细胞 CMF 修复的可调节纳米层-聚合物复合贴片
- 批准号:
9762080 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
Tunable Nanolayer-Polymer Composite Patches for Cell-Free CMF Repair
用于无细胞 CMF 修复的可调节纳米层-聚合物复合贴片
- 批准号:
9978810 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
Tunable Nanolayer-Polymer Composite Patches for Cell-Free CMF Repair
用于无细胞 CMF 修复的可调节纳米层-聚合物复合贴片
- 批准号:
9312802 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
Tunable Nanolayer-Polymer Composite Patches for Cell-Free CMF Repair
用于无细胞 CMF 修复的可调节纳米层-聚合物复合贴片
- 批准号:
9108054 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multivalent Nano-conjugates for Targeted Penetration of and Delivery to Dense Extracellular Matrices
用于靶向渗透和递送至致密细胞外基质的多价纳米缀合物
- 批准号:
10286340 - 财政年份:2020
- 资助金额:
$ 52万 - 项目类别:
Multivalent Nano-conjugates for Targeted Penetration of and Delivery to Dense Extracellular Matrices
用于靶向渗透和递送至致密细胞外基质的多价纳米缀合物
- 批准号:
10435694 - 财政年份:2018
- 资助金额:
$ 52万 - 项目类别: