Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
基本信息
- 批准号:10179312
- 负责人:
- 金额:$ 55.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-02 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS preventionAIDS/HIV problemAdoptionAutomobile DrivingBayesian AnalysisBehaviorBehavior TherapyBehavioralBiologicalCluster randomized trialCommunicable DiseasesCommunitiesComputer ModelsComputer softwareDataDevelopmentDimensionsDiseaseEpidemicEthicsEvaluationEvolutionFamilyFoundationsGoalsHIVHealth SciencesHumanIndividualInfectionInterventionLearningLikelihood FunctionsLogisticsMachine LearningMathematicsMethodologyMethodsModelingPatternPhysicsPopulationPrevention MeasuresPrevention strategyProbabilityProcessPropertyPublic HealthPythonsResearchResearch PersonnelSET DomainScienceSpecific qualifier valueStatistical MethodsStatistical ModelsStructureTimeUncertaintybaseeffective interventionhigh dimensionalityimplementation interventionindexinginnovationinsightinterestmembernetwork modelsopen sourcepandemic diseasepathogenpre-exposure prophylaxissimulationstatisticsstemtooltreatment adherencetreatment strategy
项目摘要
Network models are used to investigate the spread of HIV/AIDS, but rather than assuming that the members of
a population of interest are fully mixed, the network approach enables individual-level specification of contact
patterns by considering the structure of connections among the members of the population. By representing
individuals as nodes and contacts between pairs of individuals as edges, this network depiction enables
identification of individuals who drive the epidemic, allows for accurate assessment of study power in cluster-
randomized trials, and makes it possible to evaluate the impact of interventions on the individuals themselves,
their partners, and the broader network. There are currently two major mathematical paradigms to the
modeling of networks: the statistical approach and the mechanistic approach. In the statistical approach, one
specifies a model that states the likelihood of observing a given network, whereas in the mechanistic approach
one specifies a set of domain-specific mechanistic rules at the level of individual nodes, the actors in the
network, that are used to evolve the network over time. Given that mechanistic models directly model
individual-level behaviors – modification of which is the foundation of most prevention measures – they are a
natural fit for infectious diseases. Another attractive feature of mechanistic models is their scalability as they
can be implemented for networks consisting of thousands or even millions of nodes, making it possible to
simulate population-wide implementation of interventions. Lack of statistical methods for calibrating these
models to empirical data has however impeded their use in real-world settings, a limitation that stems from the
fact that there are typically no closed-form likelihood functions available for these models due the exponential
increase in the number of ways, as a function of network size, of arriving at a given observed network. We
propose to overcome this gap by advancing inferential and model selection methods for mechanistic network
models, and by developing a framework for investigating their similarities with statistical network models. We
base our approach on approximate Bayesian computation (ABC), a family of methods developed specifically
for settings where likelihood functions are intractable or unavailable. Our specific aims are the following. Aim 1:
To develop a statistically principled framework for estimating parameter values and their uncertainty for
mechanistic network models. Aim 2: To develop a statistically principled method for model choice between two
competing mechanistic network models and estimating the uncertainty surrounding this choice. Aim 3: To
establish a framework for mapping mechanistic network models to statistical models. We also propose to
implement these methods in open source software, using a combination of Python and C/C++, to facilitate their
dissemination and adoption. We believe that the research proposed here can help harness mechanistic
network models – and with that leverage some of the insights developed in the network science community
over the past decade and more – to help eradicate this disease.
网络模型用于调查艾滋病毒/艾滋病的传播,但不是假设网络模型的成员
感兴趣的人群完全混合,网络方法可以实现个人层面的接触规范
通过考虑人口成员之间的联系结构来形成模式。
个体作为节点,个体对之间的联系作为边缘,这种网络描述使得
识别推动流行病的个人,可以准确评估集群中的研究能力
随机试验,使评估干预措施对个人本身的影响成为可能,
他们的合作伙伴以及更广泛的网络目前有两种主要的数学范式。
网络建模:统计方法和机械方法。
指定一个模型,说明观察给定网络的可能性,而在机械方法中
一个在单个节点(节点中的参与者)级别指定一组特定于领域的机械规则
网络,用于随着时间的推移演化网络。考虑到机械模型直接建模。
个人层面的行为——改变行为是大多数预防措施的基础——它们是
机械模型的另一个吸引人的特点是它们的可扩展性。
可以针对由数千甚至数百万个节点组成的网络实现,从而使得
模拟在人群范围内实施干预措施。缺乏校准这些措施的统计方法。
然而,经验数据的模型阻碍了它们在现实世界中的使用,这一限制源于
事实上,由于指数的原因,这些模型通常没有可用的封闭形式似然函数
作为网络规模的函数,到达给定观察网络的方式数量增加。
建议通过推进机械网络的推理和模型选择方法来克服这一差距
模型,并开发一个框架来研究它们与统计网络模型的相似性。
我们的方法基于近似贝叶斯计算(ABC),这是专门开发的一系列方法
对于似然函数难以处理或不可用的情况,我们的具体目标如下:
开发一个用于估计参数值及其不确定性的理论原理框架
目标 2:开发一种专业原理的方法来在两个模型之间进行选择。
竞争机制网络模型并估计该选择的不确定性 目标 3:
我们还建议建立一个将机械网络模型映射到统计模型的框架。
使用Python和C/C++的组合在开源软件中实现这些方法,以方便他们
我们相信这里提出的研究可以帮助利用机制。
网络模型——并利用网络科学界发展的一些见解
过去十年多来,我们致力于帮助根除这种疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jukka-Pekka Onnela其他文献
Jukka-Pekka Onnela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jukka-Pekka Onnela', 18)}}的其他基金
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
- 批准号:
10651874 - 财政年份:2019
- 资助金额:
$ 55.43万 - 项目类别:
Passive Data to Improve Outcomes in Advanced Cancer
被动数据可改善晚期癌症的治疗结果
- 批准号:
9900874 - 财政年份:2019
- 资助金额:
$ 55.43万 - 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
- 批准号:
10488636 - 财政年份:2019
- 资助金额:
$ 55.43万 - 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
- 批准号:
9817000 - 财政年份:2019
- 资助金额:
$ 55.43万 - 项目类别:
Using mobile phones for social and behavioral sensing of mood disorder patients
使用手机对情绪障碍患者进行社交和行为感知
- 批准号:
8571083 - 财政年份:2013
- 资助金额:
$ 55.43万 - 项目类别:
相似海外基金
INTEGRATING A TRANSDIAGNOSTIC PSYCHOLOGICAL INTERVENTION IN THE CARE FOR ADOLESCENTS AND YOUTH WITH HIV IN KENYA
将跨诊断心理干预纳入肯尼亚艾滋病毒感染青少年的护理中
- 批准号:
10675988 - 财政年份:2023
- 资助金额:
$ 55.43万 - 项目类别:
reSET for the Treatment of Stimulant Use in HIV Clinics: Care Optimization Supporting Treatment Adherence (COSTA)
用于治疗 HIV 诊所兴奋剂使用的 reSET:护理优化支持治疗依从性 (COSTA)
- 批准号:
10553554 - 财政年份:2022
- 资助金额:
$ 55.43万 - 项目类别:
GODDESS (Gathering Online for Dialogue and Discussion to Enhance Social Support): Engaging young African American women in a virtual group app to address alcohol misuse, sexual risk, and PrEP in NC
GODDESS(在线聚集进行对话和讨论,以加强社会支持):让年轻的非裔美国女性参与虚拟团体应用程序,以解决北卡罗来纳州的酒精滥用、性风险和 PrEP 问题
- 批准号:
10541028 - 财政年份:2022
- 资助金额:
$ 55.43万 - 项目类别:
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
- 批准号:
10541742 - 财政年份:2022
- 资助金额:
$ 55.43万 - 项目类别:
Botswana Smoking Abstinence Reinforcement Trial (BSMART)
博茨瓦纳戒烟强化试验(BSMART)
- 批准号:
10541071 - 财政年份:2022
- 资助金额:
$ 55.43万 - 项目类别: