Lesion and activity dependent corticospinal tract plasticity
病变和活动依赖性皮质脊髓束可塑性
基本信息
- 批准号:10176602
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-19 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAnatomyAnimalsAutomobile DrivingAxonBehavioralBiological MarkersCathodesCervicalCervical spinal cord injuryCharacteristicsChronicCorticospinal TractsDependenceElementsFeedbackFiberFoundationsFunctional disorderFundingGoalsGrowthHand functionsHumanHyperreflexiaImpairmentInjuryInterneuronsInterruptionInterventionKnowledgeLeadLesionMediatingMethodsModelingMolecularMotorMotor CortexMotor PathwaysMovementMuscleMuscle WeaknessMuscle functionMuscular AtrophyNeuronsOutcomeParalysedPatternPharmacologyPhysiologicalProcessPublishingPyramidal TractsRecoveryRehabilitation therapyResearchRunawaySensorySignal TransductionSpinalSpinal CordSpinal InjuriesSpinal cord injuryStructureSynapsesSynaptic plasticitySystemTestingTranslatingUp-RegulationUpper Extremityaxon growthbasecholinergicclinically relevantfunctional outcomesfunctional plasticitygain of functionimprovedloss of functionmotor controlmotor function improvementmotor recoverymotor rehabilitationneuroregulationnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsoptogeneticspostsynapticrecruitrelating to nervous systemrepair strategyrepairedspasticityspinal cord repairsynaptogenesis
项目摘要
Corticospinal tract (CST) injury deprives spinal circuits of movement control signals. This leads to loss of
function—muscle weakness and paralysis—and gain of dysfunction—including hyperreflexia and spasticity. To
repair the CST after injury and restore motor control, it is necessary to abrogate the impairments due to both the
loss of function and gain of dysfunction following injury. Our research during the prior funding period shows that
activity-dependent processes underlie both the loss of function and gain of dysfunction after CST injury. This
finding provides the foundation for developing new therapeutic neuromodulatory approaches to target activity
dependence using motor cortex (MCX) stimulation and transspinal direct current stimulation (tsDCS).
MCX stimulation after injury is effective in CST repair and motor recovery. In Aim 1 we will determine the
most effective MCX neuromodulation treatment to produce persistent structural and functional plasticity of the
corticospinal system. Using different stimulation patterns, we will ask if efficacy depends on recruiting CST
axon growth-promoting signaling. Using optogenetics to identify activated CST axons, we will test how
stimulation patterns determine anatomical and physiological outcomes. Knowing that recovery is more than
CST sprouting, we will ask if efficacy depends on producing long-term physiological changes in spinal circuits.
We recently showed that selective CST injury or MCX inactivation produces trans-neuronal loss of spinal
cholinergic interneurons and that this loss can be rescued by spinal activation. In Aim 2 we will determine how
MCX neuromodulation regulates transneuronal segmental circuit remodeling after injury to promote spinal
circuit repair. We will ask how CST injury impacts the major class of excitatory premotor interneurons of the
CST. We will test if MCX stimulation ameliorates trans-neuronal circuit changes and then examine the interplay
of repair strategies differentially targeting microglial-based spinal circuit remodeling and CST sprouting
In Aim 3 we will harness the differential actions of tsDCS on spinal circuits to enhance repair and
rehabilitation efficacy after cervical SCI. Spinal circuits integrate motor control signals with afferent information.
After SCI, with the loss of motor pathways, spared afferent feedback dominates segmental circuit function. We
recently showed that afferent competition diminishes CST connection strength, to reinforce afferent over
integrated control. We will use the differential actions of tsDCS to promote spared CST function and weaken
potentially “runaway” afferent input, to rebalance segmental control. We will develop a novel strategy that
combines neuromodulation-based repair with neuromodulation-assisted rehabilitation to promote recovery.
Successful completion of our studies will advance our understanding of the mechanisms of impairment and
the mechanisms underlying novel neuromodulatory repair strategies after SCI. Results will inform how best to
integrate motor behavioral rehabilitation and activity-based interventions to provide potentially clinically
relevant approaches to improve motor control in humans after cervical SCI.
皮质脊髓束(CST)损伤剥夺了运动控制信号的脊柱。
功能 - 肌肉无力和瘫痪ー功能障碍和增益 - 无效的超反射性和痉挛性
修复CST Anjury IND恢复电动机控制,有必要消除由于既有的损害
受伤后功能丧失和功能障碍的增益。
CST损伤后,活动依赖性过程Swandlie既丧失了功能的丧失和功能障碍的增益。
发现Proides为开发新的治疗性神经调节方法的基础来靶向活动
使用运动皮层(MCX)刺激和跨型直流电流刺激(TSDC)的依赖性。
MCX刺激ANJURY在CST修复中有效,AIM 1中的运动恢复。
最有效的MCX神经调节裤,以产生持续的结构和功能性塑料
皮质脊髓系统使用不同的刺激模式,我们将询问功效是否取决于招募CST
轴突生长促进信号传导。
刺激模式决定了解剖学和生理结果。
CST发芽,我们将询问疗效是否取决于产生脊柱回路的长期生理变化。
我们最近表明,选择性的CST损伤或MCX INACX失活会导致脊柱的反式神经元丧失
胆碱能中间神经元和这种sthiss可以通过AIM 2中的脊柱激活来确定。
MCX神经调节调节损伤后的跨神经元节段重塑以促进脊柱
电路维修。
CST。
维修策略的基于小胶质的脊柱电路重塑和CST发芽不同
在AIM 3中,我们将利用TSDC对脊柱电路的差异作用,以增强维修和
宫颈科学后的康复功效。
在SCI之后,随着电动路径的损失,RADERD反馈主导了分段电路的功能
最近表明,强化竞争会降低CST连接强度,以加强磨练
集成控制
潜在的“失控”投入,以重新平衡分段。
将基于神经调节的修复与神经调节辅助康复相结合,以促进恢复。
成功的综合我们的研究将提高我们对损害机制和
SCI之后的新型神经调节CAIR策略的基础机制。
整合运动行为康复和基于活动的干预措施,以提供潜在的临床
宫颈SCI后改善人类运动控制的相关方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John H Martin其他文献
John H Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John H Martin', 18)}}的其他基金
Interaction of Motor Learning with Transcranial Direct Current - Efficacy and Mechanisms
运动学习与经颅直流电的相互作用 - 功效和机制
- 批准号:
10577313 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Combined Biomaterial and Neuromodulatory Approach to Promote Axonal Outgrowth and Connections After Cervical SCI
结合生物材料和神经调节方法促进宫颈 SCI 后轴突生长和连接
- 批准号:
10323048 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
- 批准号:
9256549 - 财政年份:2013
- 资助金额:
$ 34.34万 - 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
- 批准号:
8654370 - 财政年份:2013
- 资助金额:
$ 34.34万 - 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
- 批准号:
8597664 - 财政年份:2013
- 资助金额:
$ 34.34万 - 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
- 批准号:
8842211 - 财政年份:2013
- 资助金额:
$ 34.34万 - 项目类别:
Lesion and activity dependent corticospinal tract plasticity
病变和活动依赖性皮质脊髓束可塑性
- 批准号:
10413055 - 财政年份:2009
- 资助金额:
$ 34.34万 - 项目类别:
Diversity Supplement: Lesion and Activity Dependent Corticospinal Tract Plasticity
多样性补充:病变和活动依赖性皮质脊髓束可塑性
- 批准号:
10431593 - 财政年份:2009
- 资助金额:
$ 34.34万 - 项目类别:
Lesion and activity dependent corticospinal tract plasticity
病变和活动依赖性皮质脊髓束可塑性
- 批准号:
7730193 - 财政年份:2009
- 资助金额:
$ 34.34万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
- 批准号:
10805071 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
An Inducible Swine Hepatocellular Carcinoma Platform for Enhanced Therapeutic Development
用于增强治疗开发的诱导猪肝细胞癌平台
- 批准号:
10758109 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别: