Lesion and activity dependent corticospinal tract plasticity

病变和活动依赖性皮质脊髓束可塑性

基本信息

  • 批准号:
    10176602
  • 负责人:
  • 金额:
    $ 34.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-19 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Corticospinal tract (CST) injury deprives spinal circuits of movement control signals. This leads to loss of function—muscle weakness and paralysis—and gain of dysfunction—including hyperreflexia and spasticity. To repair the CST after injury and restore motor control, it is necessary to abrogate the impairments due to both the loss of function and gain of dysfunction following injury. Our research during the prior funding period shows that activity-dependent processes underlie both the loss of function and gain of dysfunction after CST injury. This finding provides the foundation for developing new therapeutic neuromodulatory approaches to target activity dependence using motor cortex (MCX) stimulation and transspinal direct current stimulation (tsDCS). MCX stimulation after injury is effective in CST repair and motor recovery. In Aim 1 we will determine the most effective MCX neuromodulation treatment to produce persistent structural and functional plasticity of the corticospinal system. Using different stimulation patterns, we will ask if efficacy depends on recruiting CST axon growth-promoting signaling. Using optogenetics to identify activated CST axons, we will test how stimulation patterns determine anatomical and physiological outcomes. Knowing that recovery is more than CST sprouting, we will ask if efficacy depends on producing long-term physiological changes in spinal circuits. We recently showed that selective CST injury or MCX inactivation produces trans-neuronal loss of spinal cholinergic interneurons and that this loss can be rescued by spinal activation. In Aim 2 we will determine how MCX neuromodulation regulates transneuronal segmental circuit remodeling after injury to promote spinal circuit repair. We will ask how CST injury impacts the major class of excitatory premotor interneurons of the CST. We will test if MCX stimulation ameliorates trans-neuronal circuit changes and then examine the interplay of repair strategies differentially targeting microglial-based spinal circuit remodeling and CST sprouting In Aim 3 we will harness the differential actions of tsDCS on spinal circuits to enhance repair and rehabilitation efficacy after cervical SCI. Spinal circuits integrate motor control signals with afferent information. After SCI, with the loss of motor pathways, spared afferent feedback dominates segmental circuit function. We recently showed that afferent competition diminishes CST connection strength, to reinforce afferent over integrated control. We will use the differential actions of tsDCS to promote spared CST function and weaken potentially “runaway” afferent input, to rebalance segmental control. We will develop a novel strategy that combines neuromodulation-based repair with neuromodulation-assisted rehabilitation to promote recovery. Successful completion of our studies will advance our understanding of the mechanisms of impairment and the mechanisms underlying novel neuromodulatory repair strategies after SCI. Results will inform how best to integrate motor behavioral rehabilitation and activity-based interventions to provide potentially clinically relevant approaches to improve motor control in humans after cervical SCI.
皮质脊髓区(CST)损伤剥夺了运动控制信号的脊柱回路。这导致失去 功能 - 肌肉的无力和瘫痪 - 功能障碍 - 包括超反射和痉挛。到 受伤后修复CST并恢复运动控制 受伤后功能丧失和功能障碍的增益。我们在以前的资助期间的研究表明 CST损伤后的功能丧失和功能障碍的增益均依赖于活动依赖性过程。这 发现为开发新的治疗神经调节方法为靶向活动提供了基础 使用运动皮层(MCX)刺激和跨脊柱直流电流刺激(TSDC)的依赖性。 受伤后MCX刺激可有效CST修复和运动恢复。在AIM 1中,我们将确定 最有效的MCX神经调节处理可产生持续的结构和功能可塑性 皮质脊髓系统。使用不同的刺激模式,我们将询问有效是否取决于招募CST 轴突生长促进信号。使用光遗传学识别激活的CST轴突,我们将测试 刺激模式决定了解剖学和身体结果。知道恢复不仅仅是 CST发芽,我们将询问有效性是否取决于产生脊柱回路的长期生理变化。 我们最近表明,选择性CST损伤或MCX失活会导致脊柱的跨神经元丧失 胆碱能中间神经元,并且可以通过脊柱激活来挽救这种损失。在AIM 2中,我们将确定如何 MCX神经调节调节损伤后的跨神经元节段重塑以促进脊柱 电路维修。我们将询问CST伤害如何影响主要的兴奋性前神经元的主要类别 CST。我们将测试MCX模拟是否可以改善反式神经元电路的变化,然后检查相互作用 维修策略的针对基于小胶质细胞的脊柱电路重塑和CST发芽的不同。 在AIM 3中,我们将利用TSDC对脊柱电路的差异作用,以增强维修和 宫颈科学后的康复效率。脊柱电路与传入信息集成了电机控制信号。 SCI之后,随着电动路径的损失,免于传入的反馈主导了节段电路函数。我们 最近表明,传入竞争会降低CST连接强度,以增强传入 集成控制。我们将使用TSDC的差异作用来促进不幸的CST功能和弱 可能“失控”传入输入,以重新平衡分段控制。我们将制定一种新颖的策略 将基于神经调节的修复与神经调节辅助康复相结合,以促进恢复。 成功完成我们的研究将提高我们对损害机制和 SCI后新型神经调节修复策略的基础机制。结果将告知如何最好 集成运动行为康复和基于活动的干预措施,以提供潜在的临床 宫颈SCI后改善人类运动控制的相关方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John H Martin其他文献

John H Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John H Martin', 18)}}的其他基金

Interaction of Motor Learning with Transcranial Direct Current - Efficacy and Mechanisms
运动学习与经颅直流电的相互作用 - 功效和机制
  • 批准号:
    10577313
  • 财政年份:
    2022
  • 资助金额:
    $ 34.34万
  • 项目类别:
Diversity Supplement to 2R01NS064004
2R01NS064004 的多样性补充
  • 批准号:
    10303610
  • 财政年份:
    2021
  • 资助金额:
    $ 34.34万
  • 项目类别:
Combined Biomaterial and Neuromodulatory Approach to Promote Axonal Outgrowth and Connections After Cervical SCI
结合生物材料和神经调节方法促进宫颈 SCI 后轴突生长和连接
  • 批准号:
    10323048
  • 财政年份:
    2021
  • 资助金额:
    $ 34.34万
  • 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
  • 批准号:
    8654370
  • 财政年份:
    2013
  • 资助金额:
    $ 34.34万
  • 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
  • 批准号:
    8597664
  • 财政年份:
    2013
  • 资助金额:
    $ 34.34万
  • 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
  • 批准号:
    9256549
  • 财政年份:
    2013
  • 资助金额:
    $ 34.34万
  • 项目类别:
Repairing maladaptive corticospinal tract development
修复适应不良的皮质脊髓束发育
  • 批准号:
    8842211
  • 财政年份:
    2013
  • 资助金额:
    $ 34.34万
  • 项目类别:
Lesion and activity dependent corticospinal tract plasticity
病变和活动依赖性皮质脊髓束可塑性
  • 批准号:
    10413055
  • 财政年份:
    2009
  • 资助金额:
    $ 34.34万
  • 项目类别:
Diversity Supplement: Lesion and Activity Dependent Corticospinal Tract Plasticity
多样性补充:病变和活动依赖性皮质脊髓束可塑性
  • 批准号:
    10431593
  • 财政年份:
    2009
  • 资助金额:
    $ 34.34万
  • 项目类别:
Lesion and activity dependent corticospinal tract plasticity
病变和活动依赖性皮质脊髓束可塑性
  • 批准号:
    7730193
  • 财政年份:
    2009
  • 资助金额:
    $ 34.34万
  • 项目类别:

相似国自然基金

儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
  • 批准号:
    82360892
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
  • 批准号:
    82201271
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
    32201547
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
  • 批准号:
    10590363
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
  • 批准号:
    10805071
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
An Inducible Swine Hepatocellular Carcinoma Platform for Enhanced Therapeutic Development
用于增强治疗开发的诱导猪肝细胞癌平台
  • 批准号:
    10758109
  • 财政年份:
    2023
  • 资助金额:
    $ 34.34万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 34.34万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 34.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了