Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline
检验以下假设:CF 免疫反应的微生物能量劫持会在肺功能下降期间选择特定病原体
基本信息
- 批准号:10175023
- 负责人:
- 金额:$ 53.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAnaerobic BacteriaAnimal ModelAntibioticsAutomobile DrivingBacteriaBacterial PhysiologyCarbonCell RespirationChargeChronicComplexConsumptionCystic FibrosisCystic Fibrosis sputumDisease ProgressionDissectionDrug DesignDrug Metabolic DetoxicationEarth scienceEnergy-Generating ResourcesEnvironmentEnzymesEpithelial CellsFingerprintFloodsForensic MedicineGasesGene ExpressionGenerationsGenesGeneticGrowthHabitatsHealthHumanHypoxiaImageImmune responseImmune systemIn VitroIndividualInfectionInflammatoryIsotopesKnowledgeLearningLung infectionsMass Spectrum AnalysisMeasurableMeasurementMeasuresMembraneMetabolicMetabolismMicrobeMicrobial BiofilmsMolecular ProfilingMorbidity - disease rateMucous body substanceNitric OxideNitrous OxideOxidantsOxidesOxygenPathway interactionsPatientsPatternPhysiologicalPilot ProjectsPlayProcessProductionRespiratory FailureRespiratory ProcessRoleSiteSoilSourceSputumSystemTestingTobramycinantibiotic tolerancecohortcombatcystic fibrosis airwaycystic fibrosis infectioncystic fibrosis patientsdenitrificationdysbiosisexperimental studyfitnessfungushost-microbe interactionsin situ imagingin vivoinnovationinsightmembermicrobialmicrobial communitymicrobiomemicrobiotamortalityneutrophilnovelopportunistic pathogenoxidationpathogenpulmonary function declinestable isotopetooltraittranslational approach
项目摘要
PROJECT SUMMARY
Individuals living with cystic fibrosis (CF) combat devastating, chronic microbial infections of the airways.
Though CF patients are usually colonized by otherwise innocent bacteria and fungi—many of which derive
from soil environments—the compromised CF immune system is unable to clear these opportunists, and the
ensuing struggle between host and microbes eventually leads to failure of the pulmonary system. Conventional
antibiotics are not very effective. One widely held view for why this is the case is that the resident microbiota
are growing slowly and their membranes are insufficiently charged to take up commonly-used antibiotics such
as tobramycin. Accordingly, if we seek new ways to treat CF lung infections, we must better understand how
microbes thrive in this habitat. Different lines of evidence indicate that oxygen is limiting in the CF airways at
the microscale relevant to opportunistic pathogens. Though carbon sources are replete in the mucus-filled
airways, in the absence of oxygen, the bacteria and fungi that come to dominant this habitat must employ
alternative energy generation strategies to aerobic respiration. How do they do this? Energy flow is the driving
organizer of any microbial community, including those found in the CF airways. It is well established that the
nitric oxide (NO) generated by the immune system in the CF patients is lower than that made by healthy
individuals. Indeed, epithelial cells are severely compromised in NO production, yet neutrophils that flood the
CF airways can still generate NO; this NO is insufficient to kill the microbes, but has the potential to transform
into an energy source for those capable of denitrification. Accordingly, we seek to test the hypothesis that
microbial energetic hijacking of the CF immune response via denitrification pathways selects for specific
pathogens during lung function decline. To test this hypothesis, we plan to leverage powerful isotopic tools
from the Earth sciences that permit the sources of metabolites in complex environments, such as the CF
airways, to be determined atom by atom, providing a non-invasive, forensic molecular fingerprint. In particular,
we will focus on interpreting N2O, a measurable product of the denitrification pathway in CF sputum and breath
gas. In addition to approaches employing bacterial physiology, genetics, and in situ imaging of host-microbe
interactions, we will use these isotopic tools to gain insight into how the NO that is reduced to N2O in the CF
airways may favor the fitness of particular microbial community members. To do this, we propose three specific
aims: Aim 1 will identify the conditions and pathways leading to N2O production by common CF bacteria and
fungi, Aim 2 will utilize advanced isotopic analyses to dissect the N2O produced by these microbes to
forensically infer its source, and Aim 3 will apply these insights to a pilot study of adult CF patients to determine
whether particular types of denitrifiers are favored as lung function declines. Attainment of these objectives will
provide the critical knowledge needed to guide early translational approaches for treating infections of the CF
airways, as well as establish tools that can be applied more broadly to other studies of dysbiosis.
项目摘要
患有Cystem纤维化(CF)战斗毁灭性的人,气道的慢性微生物感染。
尽管CF患者通常被其他无辜的Bactteria和Fungi殖民 - 其中许多
从土壤环境中 - 受损的CF免疫系统无法清除这些机会主义者,并且
随之而来的宿主和微生物之间的斗争最终导致肺系统失败。
抗生素不是很有效。
正在缓慢增长,其膜不足以承担通常使用的抗体药
相应地,如果我们看到治疗CF肺部感染的方法
微生物在这个栖息地繁衍生息。
与机会性病原体相关的显微镜。
气道在没有氧气的情况下,占主导地位的栖息地的bactteria和真菌必须采用
有氧呼吸的替代能源产生策略。
任何微生物社区的组织者,包括在CF Airways中发现的组织者。
CF患者中免疫系统产生的一氧化氮(NO)较低
个人。
CF航空仍然可以生成不
成为能够剥离的人的能量来源。
通过非硝化途径对CF免疫反应的微生物能量劫持选择特定
肺功能下降期间的病原体。
从允许在复杂环境中代谢物的科学(例如CF)
通过原子确定原子,尤其是非侵入性的法医指纹。
我们将专注于解释N2O,N2O是CF痰液和呼吸中硝化途径的可测量产物
除了采用细菌生理学,遗传学和原位成像的方法之外
互动,我们将使用工具来洞悉CF中的N2O的洞察力
航空公司可能会有利于特定微生物社区成员的适应性。
目的:AIM 1将确定导致通用CF细菌产生N2O的条件和途径
真菌,AIM 2将利用这些微生物产生的高级同位素分析N2O
从法医上讲,AIM 3将把这些见解应用于
随着肺功能下降,在此是否受到特定类型的硝化体。
提供指导早期翻译方法来治疗CF感染所需的关键知识
Airways以及建立工具,可以更多地应用于其他营养不良研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dianne K Newman其他文献
Dianne K Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dianne K Newman', 18)}}的其他基金
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline- Diversity Supplement
测试以下假设:微生物对 CF 免疫反应的能量劫持会在肺功能下降期间选择特定病原体 - Diversity Supplement
- 批准号:
10745232 - 财政年份:2023
- 资助金额:
$ 53.11万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline
检验以下假设:CF 免疫反应的微生物能量劫持会在肺功能下降期间选择特定病原体
- 批准号:
10618780 - 财政年份:2020
- 资助金额:
$ 53.11万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline
检验以下假设:CF 免疫反应的微生物能量劫持会在肺功能下降期间选择特定病原体
- 批准号:
10388211 - 财政年份:2020
- 资助金额:
$ 53.11万 - 项目类别:
Testing the hypothesis that microbial energetic hijacking of the CF immune response selects for specific pathogens during lung function decline- Diversity Supplement
测试以下假设:微生物对 CF 免疫反应的能量劫持会在肺功能下降期间选择特定病原体 - Diversity Supplement
- 批准号:
10818205 - 财政年份:2020
- 资助金额:
$ 53.11万 - 项目类别:
Biological mechanisms and consequences of chlorate treatment on Pseudomonas aeruginosa chronic wound infections
氯酸盐治疗铜绿假单胞菌慢性伤口感染的生物学机制和后果
- 批准号:
9810001 - 财政年份:2019
- 资助金额:
$ 53.11万 - 项目类别:
Biological mechanisms and consequences of efficient extracellular electron transfer in Pseudomonas aeruginosa
铜绿假单胞菌有效细胞外电子转移的生物学机制和后果
- 批准号:
10660729 - 财政年份:2017
- 资助金额:
$ 53.11万 - 项目类别:
Biological consequences of enzymatic inactivation of Pseudomonas pyocyanin
绿脓杆菌酶灭活的生物学后果
- 批准号:
9384435 - 财政年份:2017
- 资助金额:
$ 53.11万 - 项目类别:
Biological consequences of enzymatic inactivation of Pseudomonas pyocyanin
绿脓杆菌酶灭活的生物学后果
- 批准号:
9918822 - 财政年份:2017
- 资助金额:
$ 53.11万 - 项目类别:
Geobiological approaches to understanding pulmonary infections in situ
了解原位肺部感染的地球生物学方法
- 批准号:
8412666 - 财政年份:2012
- 资助金额:
$ 53.11万 - 项目类别:
Geobiological approaches to understanding pulmonary infections in situ
了解原位肺部感染的地球生物学方法
- 批准号:
8876780 - 财政年份:2012
- 资助金额:
$ 53.11万 - 项目类别:
相似国自然基金
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
- 批准号:52300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微氧环境下兼性厌氧菌和产甲烷菌降解长链脂肪酸的协同机制
- 批准号:52170037
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
兼性厌氧菌JPG1在不同氧条件下对铜胁迫的抗性机制与调控
- 批准号:52070037
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
肠道厌氧菌S.Moorei通过抑制AGK调节浸润性CD8+T细胞糖酵解增强直肠癌的辐射抵抗及机制
- 批准号:82073329
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Vanderbilt Antibody and Antigen Discovery for Clostridioides difficile Vaccines
艰难梭菌疫苗的范德比尔特抗体和抗原发现
- 批准号:
10625686 - 财政年份:2023
- 资助金额:
$ 53.11万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 53.11万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 53.11万 - 项目类别:
Advancement of the Xiphophorus Model for Studying Disease
研究疾病的剑尾动物模型的进展
- 批准号:
10805701 - 财政年份:2023
- 资助金额:
$ 53.11万 - 项目类别:
Swallowable smart capsule for targeted gastrointestinal microbiome sampling
用于靶向胃肠道微生物组采样的可吞咽式智能胶囊
- 批准号:
10642943 - 财政年份:2022
- 资助金额:
$ 53.11万 - 项目类别: