Role of methylation-dependent pathways in aging and stress
甲基化依赖性途径在衰老和压力中的作用
基本信息
- 批准号:10172812
- 负责人:
- 金额:$ 40.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingAnimalsAttenuatedBiological AssayCaenorhabditis elegansCaloriesCell physiologyCellsChromatinCystic FibrosisDefectDietDiet ModificationDiseaseDisease modelDrug Metabolic DetoxicationEpigenetic ProcessEscherichia coliFailureFatty LiverFatty acid glycerol estersFolic AcidGene ActivationGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic TranscriptionGuanosine Triphosphate PhosphohydrolasesHMGB1 ProteinHistonesImmuneImmune responseImmune signalingImmune systemImmunityImmunologic MarkersLaboratoriesLecithinLinkLipidsLiver diseasesMediatingMembraneMetabolicMetabolismMethylationMethyltransferaseMitogen-Activated Protein KinasesModelingMolecularMutationNatural ImmunityNutrientPathogenicityPathway interactionsPhenotypePhospholipidsPhosphorylationPhysiologicalPhysiologyProcessProductionPseudomonasPseudomonas aeruginosaRNA interference screenRegulationReporterRoleS-AdenosylmethionineSRE-1 binding proteinSignal PathwaySignal TransductionSphingomyelinsStimulusStressSystemTechniquesTranscriptional RegulationUp-RegulationVitamin B 12WalkersWorkactivating transcription factorbiological adaptation to stresschromatin modificationdeep sequencingdietaryhistone methylationhistone methyltransferasehistone modificationimmune activationinnate immune functioninsightlipidomicsp38 Mitogen Activated Protein Kinasepathogenresponsetranscriptome sequencingwhole genome
项目摘要
Diet and metabolism can affect how our bodies work in many ways, not just by turning excess
calories into fat. Some metabolites act as signals or can be used to modify how genes are
expressed, which can link diet to how our cells function and their capacity to respond to stress. We
propose to study how one metabolite, s-adenosylmethionine (SAM), can both activate markers of
immunity and limit how cells can change gene expression patterns in response to pathogens or other
stress. These seemingly paradoxical functions occur because SAM can be used for different cellular
needs. SAM can be used to make the phospholipid phosphatidylcholine (PC) and when PC is limited
by the diet or needed for extra membrane production, much of the SAM is used for this biosynthetic
process. However, SAM is also needed for modification of histones. Using C. elegans, we found that
low SAM acted through low PC to activate markers of innate immunity on the standard laboratory
diet. However, these same animals could not survive a bacterial challenge because they couldn't
methylate histones priming gene activation and turn up pathogen responsive genes to sufficient
levels. Thus, different contexts can change the phenotypes of low SAM, as cells need to prioritize
utilization of this metabolite.
Our proposal addresses several key questions. First, it is not known how the low SAM and PC signal
activation of the immune system. Second, it is not understood how global chromatin modification
under stress might change in low SAM and third, we don't yet understand how physiological
regulators of low SAM might affect either of these phenotypes. Our C. elegans system is an excellent
model for dissecting these mechanisms. We will combine genetic and molecular techniques
(including whole genome assays for chromatin modification) with dietary modification to determine
how SAM is linked to these phenotypes. We have used screens for SAM and PC-dependent
modifiers of immunity to identify additional regulatory components and propose to determine how
these candidates may be connected to immune activation. Furthermore, we have determined that
multiple types of stress-induced gene expression depend on SAM and will use this system to ask how
SAM and the histone methyltransferases utilizing it control transcription during stress. Although low
SAM can cause phenotypes with very distinct molecular mechanisms, such as lipid-dependent
activation of a MAP kinase in the immune response and modification of histones in transcriptional
regulation, it is important to study these processes together. SAM depletion due to diet may impact
either or both of these mechanisms, changing how our cells can respond to stress.
饮食和新陈代谢可以通过多种方式影响我们的身体运作,而不仅仅是通过改变过度饮食
卡路里转化为脂肪。一些代谢物充当信号或可用于改变基因的运作方式
表达,它可以将饮食与我们的细胞功能及其应对压力的能力联系起来。我们
提议研究一种代谢物 s-腺苷甲硫氨酸 (SAM) 如何同时激活
免疫并限制细胞如何改变基因表达模式以应对病原体或其他
压力。这些看似矛盾的功能的出现是因为 SAM 可用于不同的细胞
需要。 SAM 可用于制造磷脂磷脂酰胆碱 (PC),当 PC 有限时
通过饮食或额外膜生产所需,大部分 SAM 用于这种生物合成
过程。然而,组蛋白的修饰也需要 SAM。使用秀丽隐杆线虫,我们发现
低 SAM 通过低 PC 激活标准实验室的先天免疫标志物
饮食。然而,这些相同的动物无法在细菌挑战中生存,因为它们无法
甲基化组蛋白启动基因激活并将病原体反应基因调至足够的水平
水平。因此,不同的环境可以改变低 SAM 的表型,因为细胞需要优先考虑
该代谢物的利用。
我们的提案解决了几个关键问题。首先,不知道SAM和PC信号低是怎么回事
免疫系统的激活。其次,尚不清楚全局染色质修饰是如何进行的
第三,我们还不了解生理学上的变化
低 SAM 的调节因子可能会影响这些表型中的任何一种。我们的线虫系统非常出色
剖析这些机制的模型。我们将结合遗传和分子技术
(包括染色质修饰的全基因组测定)和饮食调整以确定
SAM 如何与这些表型相关联。我们使用了 SAM 和 PC 相关的屏幕
免疫调节剂以确定额外的监管成分并建议确定如何
这些候选者可能与免疫激活有关。此外,我们还确定
多种类型的应激诱导基因表达依赖于 SAM,并将使用该系统来询问如何
SAM 和利用它的组蛋白甲基转移酶在应激期间控制转录。虽然低
SAM 可以导致具有非常独特的分子机制的表型,例如脂质依赖性
免疫反应中 MAP 激酶的激活和转录中组蛋白的修饰
监管,一起研究这些过程很重要。饮食导致的 SAM 消耗可能会影响
这些机制中的一种或两种,改变了我们的细胞对压力的反应方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Karol Walker其他文献
Amy Karol Walker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Karol Walker', 18)}}的其他基金
Dual transcriptional programs coordinate lipogenic and membrane stress responsive programs in C. elegans
双转录程序协调线虫的脂肪生成和膜应激反应程序
- 批准号:
10376264 - 财政年份:2021
- 资助金额:
$ 40.52万 - 项目类别:
Dual transcriptional programs coordinate lipogenic and membrane stress responsive programs in C. elegans - Supplement
双转录程序协调线虫的脂肪生成和膜应激反应程序 - 补充
- 批准号:
10798828 - 财政年份:2021
- 资助金额:
$ 40.52万 - 项目类别:
Dual transcriptional programs coordinate lipogenic and membrane stress responsive programs in C. elegans
双转录程序协调线虫的脂肪生成和膜应激反应程序
- 批准号:
10211209 - 财政年份:2021
- 资助金额:
$ 40.52万 - 项目类别:
Dual transcriptional programs coordinate lipogenic and membrane stress responsive programs in C. elegans
双转录程序协调线虫的脂肪生成和膜应激反应程序
- 批准号:
10571854 - 财政年份:2021
- 资助金额:
$ 40.52万 - 项目类别:
Role of methylation-dependent pathways in aging and stress
甲基化依赖性途径在衰老和压力中的作用
- 批准号:
9923536 - 财政年份:2017
- 资助金额:
$ 40.52万 - 项目类别:
Role of methylation-dependent pathways in aging and stress
甲基化依赖性途径在衰老和压力中的作用
- 批准号:
10737022 - 财政年份:2017
- 资助金额:
$ 40.52万 - 项目类别:
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 40.52万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 40.52万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 40.52万 - 项目类别: