Role of the Xbp1s/GFAT1 axis in pathological cardiac remodelling
Xbp1s/GFAT1 轴在病理性心脏重塑中的作用
基本信息
- 批准号:10170415
- 负责人:
- 金额:$ 10.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2021-12-17
- 项目状态:已结题
- 来源:
- 关键词:ATF6 geneAcuteAffectAmericanAnabolismBloodCalcium SignalingCardiacCardiac MyocytesCell physiologyComplexCouplesCouplingDataDependenceDiseaseEnzymesEpidemicEventFRAP1 geneFibrosisFutureGenetic TranscriptionGlucoseGrowthGrowth FactorHealthcareHealthcare SystemsHeartHeart DiseasesHeart HypertrophyHeart failureHexosaminesHistologicHomeostasisHypertensionHypertrophyIn VitroInflammationIschemiaLeadLightLinkMammalsMediatingMetabolicMolecularMuscle CellsMyocardial IschemiaMyocardial dysfunctionMyocardiumNeonatalOxygenPathologicPathologyPathway interactionsProcessProtein BiosynthesisProteinsPumpReperfusion InjuryReperfusion TherapyRisk FactorsRodentRoleSignal PathwaySignal TransductionStressSystemTSC2 geneTestingTransducersVentricularWorkXBP1 geneYeastsarmbasecardioprotectioncell growthclinical applicationconditional knockoutdetection of nutrientexperimental studyheart functionin vivoinducible gene expressioninsightloss of functionmisfolded proteinmouse modelnovelnovel therapeutic interventionoverexpressionpressureprotein foldingresponsetranscription factor
项目摘要
Project Summary
Heart failure occurs when the cardiac muscle is weakened and cannot pump sufficiently to meet the body's
need for blood and oxygen. Heart failure affects approximately 6 million of Americans and becomes a
tremendous burden on our healthcare and economy system. Hypertension is one of the most prominent risk
factors of heart failure. In response to high blood pressure, ventricular wall stress is augmented to overcome
the increase of afterload pressure. The heart then manifests parallel growth to ameliorate wall stress. This
concentric hypertrophic growth, once adaptive, may lead to fibrosis, inflammation, cardiac dysfunction and
eventually heart failure. Despite the important of this devastating disease, our understanding is incomplete.
Multiple events in heart failure progression are potent inducers of the unfolded protein response (UPR), a
cellular adaptive process to cope with protein-folding stress. Three signaling transducers participate in the UPR
to increase protein-folding capacity, reduce load of protein-folding and degrade terminally misfolded proteins.
However, the role of the UPR in pressure overload-induced cardiac hypertrophy and heart failure remains to be
defined. Preliminary work shows that Xbp1s, the most conserved branch of the UPR from yeast to mammals,
is acutely and potently induced in heart. Overexpression of Xbp1s in cardiomyocyte is sufficient to cause
hypertrophy. GFAT1, the rate-limiting enzyme of the hexosamine biosynthetic pathway, is discovered as a
novel transcriptional target of Xbp1s. Inducible overexpression of GFAT1 leads to more profound response to
pressure overload. GFAT1, and the hexosamine biosynthesis, may therefore mediate Xbp1s-induced
hypertrophic growth. Moreover, Xbp1s overexpression leads to strong activation of mTORC1, an essential
player in nutrient sensing and cell growth. Xbp1s may therefore couple the UPR, protein-folding, hexosamine
biosynthesis and cell growth. Studies proposed here aim to define the role of the Xbp1/GFAT1/mTORC1 axis
in cardiac hypertrophy and pathological remodelling in response to pressure overload. Both gain- and loss-of-
function approaches using inducible systems will be employed in rodents. Comprehensive analysis for cardiac
function, histological changes, and molecular derangements will be conducted. In vivo work will be
corroborated by in vitro experiments with isolated neonatal myocytes to further decipher underlying
mechanisms. Elucidation of the role of Xbp1s/GFAT1 in cardiac hypertrophy and pathological remodelling will
greatly advance our understanding of the pathology of heart failure and pave a way for future clinical
applications.
项目摘要
心力衰竭会在心脏肌肉被削弱并且无法充分泵送以达到身体时会发生心力衰竭
需要血液和氧气。心力衰竭会影响约600万美国人,并成为
我们的医疗保健和经济体系负担很大。高血压是最突出的风险之一
心力衰竭的因素。为了响应高血压,心室壁应力增加以克服
后负荷压力的增加。然后,心脏表现出平行的生长与缓解壁应力。这
一旦自适应,同心肥厚的生长可能会导致纤维化,炎症,心脏功能障碍和
最终心力衰竭。尽管这种毁灭性疾病很重要,但我们的理解是不完整的。
心力衰竭进展中的多个事件是未折叠蛋白反应(UPR)的有效诱导者
细胞自适应过程以应对蛋白质折叠应激。三个信号传感器参与UPR
为了增加蛋白质折叠能力,请减少蛋白质折叠的负荷并降解终末错误折叠的蛋白质。
但是,UPR在压力超负荷引起的心脏肥大和心力衰竭中的作用仍然是
定义。初步工作表明,XBP1是从酵母到哺乳动物的UPR最保守的分支,
敏锐而有效地诱导心脏。心肌细胞中XBP1的过表达足以引起
肥大。 GFAT1是己糖胺生物合成途径的速率限制酶,被发现为
XBP1S的新型转录靶标。 GFAT1的诱导过表达导致对
压力超负荷。 GFAT1和己糖胺生物合成,因此可以介导XBP1S诱导
肥厚的生长。此外,XBP1的过表达导致MTORC1强烈激活,这是必不可少的
营养感应和细胞生长的参与者。因此,XBP1可以将UPR(蛋白质折叠,己胺)搭配
生物合成和细胞生长。这里提出的研究旨在定义XBP1/GFAT1/MTORC1轴的作用
在心脏肥大和病理重塑中,响应压力超负荷。收益和丧失
啮齿动物将采用使用诱导系统的功能方法。心脏的全面分析
功能,组织学变化和分子扰动将进行。体内工作将是
通过用孤立的新生儿肌细胞进行体外实验来证实
机制。阐明XBP1/GFAT1在心脏肥大和病理重塑中的作用将
大大提高了我们对心力衰竭病理的理解,并为未来的临床铺平了一种方式
申请。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhao Wang其他文献
Zhao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhao Wang', 18)}}的其他基金
Investigation of the Cellular and Molecular Mechanisms of Thrombocyte Integrin Signaling
血小板整合素信号传导的细胞和分子机制研究
- 批准号:
10616738 - 财政年份:2022
- 资助金额:
$ 10.32万 - 项目类别:
Role of de novo pyrimidine biosynthesis in pathological cardiac remodeling
从头嘧啶生物合成在病理性心脏重塑中的作用
- 批准号:
10579222 - 财政年份:2022
- 资助金额:
$ 10.32万 - 项目类别:
Investigation of the Cellular and Molecular Mechanisms of Thrombocyte Integrin Signaling
血小板整合素信号传导的细胞和分子机制研究
- 批准号:
10421216 - 财政年份:2022
- 资助金额:
$ 10.32万 - 项目类别:
Role of de novo pyrimidine biosynthesis in pathological cardiac remodeling
从头嘧啶生物合成在病理性心脏重塑中的作用
- 批准号:
10364407 - 财政年份:2022
- 资助金额:
$ 10.32万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10810416 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10447691 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10279240 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Molecular mechanism of Androgen Receptor mediated transcription
雄激素受体介导转录的分子机制
- 批准号:
10612440 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
Role of the Xbp1s/GFAT1 axis in pathological cardiac remodelling
Xbp1s/GFAT1 轴在病理性心脏重塑中的作用
- 批准号:
9362022 - 财政年份:2017
- 资助金额:
$ 10.32万 - 项目类别:
Role of the Xbp1s/GFAT1 axis in pathological cardiac remodelling
Xbp1s/GFAT1 轴在病理性心脏重塑中的作用
- 批准号:
10584092 - 财政年份:2017
- 资助金额:
$ 10.32万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Regulation of retinal homeostasis and disease by Fic-mediated AMPylation
Fic 介导的 AMPylation 对视网膜稳态和疾病的调节
- 批准号:
10741035 - 财政年份:2023
- 资助金额:
$ 10.32万 - 项目类别:
The role of LPCAT3 in pathogenesis of diabetic cardiomyopathy
LPCAT3在糖尿病心肌病发病机制中的作用
- 批准号:
10867671 - 财政年份:2023
- 资助金额:
$ 10.32万 - 项目类别:
The ER-mitochondria interface in astrocytes during METH exposure and HIV-1 infection
METH 暴露和 HIV-1 感染期间星形胶质细胞中的 ER-线粒体界面
- 批准号:
10259195 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
The ER-mitochondria interface in astrocytes during METH exposure and HIV-1 infection
METH 暴露和 HIV-1 感染期间星形胶质细胞中的 ER-线粒体界面
- 批准号:
10401315 - 财政年份:2021
- 资助金额:
$ 10.32万 - 项目类别:
"A Novel Role for the UPR Component, ATF6 in AD-associated Neuroprotective Pathways"
“UPR 成分 ATF6 在 AD 相关神经保护途径中的新作用”
- 批准号:
10132964 - 财政年份:2019
- 资助金额:
$ 10.32万 - 项目类别: