Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
基本信息
- 批准号:10166848
- 负责人:
- 金额:$ 45.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-19 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAnimal TestingAntioxidantsBig DataBiochemicalBiologicalBiological AssayBiological MarkersCellular StressChemical InjuryChemical StructureChemicalsClinicalComplementComplexComputer ModelsComputer softwareComputersCryopreservationCustomDataData PoolingData SetData SourcesDatabasesDevelopmentDrug CostsEnsureEnvironmentEnvironmental PollutionEvaluationFaceGenerationsHepatocyteHepatotoxicityHumanIn VitroIndustrializationInjuryInternetLibrariesLiverLuciferasesMachine LearningMarketingMethodologyMethodsMiningModelingNutraceuticalOnline SystemsPathway interactionsPharmaceutical PreparationsPharmacologic SubstancePopulationProcessPropertyProteomicsPubChemPublic HealthQuantitative Structure-Activity RelationshipResearchResearch PersonnelResourcesResponse ElementsRiskSafetySignal TransductionSourceStatutes and LawsSystemTest ResultTestingTimeToxic effectToxicologyTranslatingValidationVertebratesadverse outcomebasecandidate validationcell injurycombatcomputational toxicologycomputer frameworkcomputerized toolscostdata miningdeep neural networkdesigndevelopmental toxicitydrug developmentendoplasmic reticulum stressexperimental studyhepatocellular injuryimprovedin vitro Assayin vitro testingin vivointerestknowledge baselarge datasetsliver injurynext generationnovelpre-clinicalpredictive modelingreproductive toxicityresearch clinical testingsafety assessmentsafety testingscreeningsearch enginetooltoxicanttranscriptomicsvirtualweb portal
项目摘要
PROJECT SUMMARY/ABSTRACT
Experimental animal and clinical testing to evaluate hepatotoxicity demands extensive resources and
long turnaround times. Utilization of computational models to directly predict the toxicity of new compounds is a
promising strategy to reduce the cost of drug development and to screen the multitude of industrial chemicals
and environmental contaminants currently lacking safety assessments. However, the current computational
models for complex toxicity endpoints, such as hepatotoxicity, are not reliable for screening new compounds
and face numerous challenges. Our recent studies have shown that traditional Quantitative Structure-Activity
Relationship modeling is applicable for relatively simple properties or toxicity endpoints with a clear
mechanism, but fails to address complex bioactivities such as hepatotoxicity. The primary objective of this
proposal is to develop novel mechanism-driven Virtual Adverse Outcome Pathway (vAOP) models for the
fast and accurate assessment of hepatotoxicity in a high-throughput manner The resulting vAOP models will
be experimentally validated using a complement of in vitro and ex vivo testing. We have generated a
preliminary vAOP model based on the antioxidant response element (ARE) pathway that has undergone
initial validation and refinement using in vitro testing. To this end, our project will generate novel predictive
models for hepatotoxicity by applying 1) a virtual cellular stress pathway model to mechanism profiling and
assessment of new compounds; 2) computational predictions to fill in the missing data for specific targets
within the pathway; 3) in vitro experimental validation with three complementary bioassays; and 4) ex vivo
experimental validation with pooled primary human hepatocytes capable of biochemical transformation. The
scientific approach of this study is to develop a universal modeling workflow that can take advantage of all
available short-term testing information, obtained from both computational predictions using novel machine
learning approaches and in vitro experiments, for target compounds of interest. We will validate and use our
modeling workflow to directly evaluate the hepatotoxicity of new compounds and prioritize candidates for
validation in pooled primary human hepatocytes. The resulting workflow will be disseminated via a web portal
for public users around the world with internet access. Importantly, this study will pave the way for the next
generation of chemical toxicity assessment by reconstructing the modeling process through a combination of
big data, computational modeling, and low cost in vitro experiments. To the best of our knowledge, the
implementation of this project will lead to the first publicly available mechanisms-driven modeling and web-
based prediction framework for complex chemical toxicity based on publicly-accessible big data. These
deliverables will have a significant public health impact by not only prioritizing compounds for safety testing or
new chemical development, but also revealing toxicity mechanisms.
项目摘要/摘要
实验性动物和临床测试评估肝毒性需要广泛的资源和
漫长的周转时间。利用计算模型直接预测新化合物的毒性是
降低药物开发成本并筛选大量工业化学品的有希望的策略
目前缺乏安全评估的环境污染物。但是,当前的计算
复杂毒性终点的模型,例如肝毒性,对筛选新化合物不可靠
并面临许多挑战。我们最近的研究表明,传统的定量结构活性
关系建模适用于相对简单的属性或毒性终点,清晰
机制,但无法解决诸如肝毒性之类的复杂生物活性。这是这个的主要目标
提案是开发新型机制驱动的虚拟不良结果途径(VAOP)模型
以高通量方式快速准确评估肝毒性,由此产生的VAOP模型将
使用体外和离体测试的补充对实验验证。我们已经产生了
基于抗氧化剂响应元件(AS)途径的初步VAOP模型
使用体外测试的初始验证和完善。为此,我们的项目将产生新颖的预测
肝毒性模型通过应用1)虚拟细胞应力途径模型用于机理分析和
评估新化合物; 2)计算预测以填写特定目标的丢失数据
在路径内; 3)三个互补生物测定的体外实验验证; 4)体内
实验性验证,具有能够生化转化的汇集的原代人肝细胞。这
这项研究的科学方法是开发一个通用的建模工作流,可以利用所有优势
可用的短期测试信息,使用新机器从两个计算预测中获得
学习方法和体外实验,用于感兴趣的目标化合物。我们将验证并使用我们的
建模工作流程以直接评估新化合物的肝毒性,并优先考虑
综合原代人肝细胞的验证。由此产生的工作流将通过Web门户进行分散
对于世界各地的公共用户,可以访问Internet。重要的是,这项研究将为下一个研究铺平道路
通过组合重建建模过程来生成化学毒性评估
大数据,计算建模和低成本体外实验。据我们所知,
该项目的实施将导致第一个公开可用机制驱动的建模和Web-
基于基于公共访问的大数据基于复杂化学毒性的预测框架。这些
可交付成果将不仅通过确定安全测试的化合物或
新的化学发展,但也揭示了毒性机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Zhu其他文献
Hao Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Zhu', 18)}}的其他基金
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10940417 - 财政年份:2023
- 资助金额:
$ 45.75万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10675944 - 财政年份:2023
- 资助金额:
$ 45.75万 - 项目类别:
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
- 批准号:
10567076 - 财政年份:2023
- 资助金额:
$ 45.75万 - 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
- 批准号:
10297361 - 财政年份:2021
- 资助金额:
$ 45.75万 - 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
- 批准号:
10458730 - 财政年份:2021
- 资助金额:
$ 45.75万 - 项目类别:
Determining how chronic ETOH influences the regenerative activities of hepatocyte subpopulations
确定慢性 ETOH 如何影响肝细胞亚群的再生活动
- 批准号:
10616522 - 财政年份:2021
- 资助金额:
$ 45.75万 - 项目类别:
Investigating imitation SWI chromatin remodeling complexes in mammalian tissue regeneration
研究哺乳动物组织再生中的仿 SWI 染色质重塑复合物
- 批准号:
10436812 - 财政年份:2020
- 资助金额:
$ 45.75万 - 项目类别:
Improving hepatocellular carcinoma mouse modeling by understanding the malignant potential and biology of liver cell subpopulations
通过了解肝细胞亚群的恶性潜能和生物学来改善肝细胞癌小鼠模型
- 批准号:
10610474 - 财政年份:2020
- 资助金额:
$ 45.75万 - 项目类别:
Mechanism-Driven Virtual Adverse Outcome Pathway Modeling for Hepatotoxicity
机制驱动的肝毒性虚拟不良结果途径建模
- 批准号:
10350701 - 财政年份:2020
- 资助金额:
$ 45.75万 - 项目类别:
Improving hepatocellular carcinoma mouse modeling by understanding the malignant potential and biology of liver cell subpopulations
通过了解肝细胞亚群的恶性潜能和生物学来改善肝细胞癌小鼠模型
- 批准号:
10172879 - 财政年份:2020
- 资助金额:
$ 45.75万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 45.75万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 45.75万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 45.75万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 45.75万 - 项目类别: