High-content optical pooled genome-wide screens of SARS-CoV-2 infection

SARS-CoV-2 感染的高内涵光学汇集全基因组筛查

基本信息

  • 批准号:
    10166221
  • 负责人:
  • 金额:
    $ 35.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Identifying gene function and impact on disease biology are overarching aims of life science research in the post- genomic era. Functional genomics also underpins our ability to understand the meaning of genetic variation in human populations. However, crucial gaps remain in the functional genomics tool set that will slow our progress in applying genomics to unravel disease biology. Currently, efficiently pooled methods for genome-wide screening require either selection of cells based on growth advantage or physical purification (e.g. by FACS or for single-cell analysis). Many disease processes are characterized by complex cellular phenotypes including defects in cell or organelle morphology, subcellular localization of molecular components, or cell motility. Other key phenotypes of interest may involve transient states (eg mitosis), cell-cell interactions, or require dynamic assays in live cells (eg, optical recording of electrophysiological activity of cardiac or neural cells). Image-based, high-content screens using overexpression and RNA interference have uncovered novel genes involved in complex phenotypes, including mitosis, synaptogenesis, and embryogenesis. However, such microplate-based screens of clonal cell populations are not regularly conducted at the genomic scale due to the expense, labor, and automation expertise required. In this program, we developed a new genomic perturbation and screening concept that combines major advantages of pooled perturbation with imaging assays for single-cell arrayed readout of complex phenotypes. Specifically, we screen pooled genomic perturbations (with CRISPR-Cas9 single-guide RNAs) using microscopy to read out phenotypes AND to identify perturbed genes at the single-cell level via in situ sequencing with a sequencing by synthesis approach. This approach is highly scalable because reagent and instrumentation costs are modest (now a few tens of thousands of dollars for a genome-wide screen). Here we request an administrative supplement to apply the technology developed in our existing award to screens for SARS-CoV-2 infection of cell lines with Rob Davey’s group at the Boston University Northeast Emerging Infectious Disease Laboratory that is equipped and actively working with high-containment viral pathogens including SARS-CoV-2. This work on antiviral host cell programs is within the scientific scope of the original grant. We will tightly coordinate the rapid execution of optical pooled screens in multiple biological models with Dr. Davey’s ongoing conventional CRISPR genomic screening activity. The data-rich genome-wide optical screening data will identify new aspects of the SARS-CoV-2-host interface across the viral life cycle and advance our understanding of candidate therapeutics as well as support the generation of new therapeutic hypotheses to address the COVID-19 pandemic.
项目概要 识别基因功能及其对疾病生物学的影响是后生命科学研究的首要目标 基因组时代也支撑了我们理解遗传变异意义的能力。 然而,功能基因组学工具集仍然存在重大差距,这将减缓我们的进步。 应用基因组学来阐明疾病生物学。目前,有效地汇集了全基因组方法。 筛选需要根据生长优势选择细胞或物理纯化(例如通过 FACS 或 用于单细胞分析)。许多疾病过程都以复杂的细胞表型为特征,包括 细胞或细胞器形态、分子成分的亚细胞定位或细胞运动的缺陷。 感兴趣的关键表型可能涉及瞬时状态(例如有丝分裂)、细胞间相互作用,或需要动态 活细胞测定(例如,基于图像的心脏或神经细胞的电生理活动的光学记录)。 使用过表达和 RNA 干扰的高内涵筛选发现了参与 复杂的表型,包括有丝分裂、突触发生和胚胎发生,然而,这种基于微孔板的方法。 由于费用、劳动力、 在此计划中,我们开发了一种新的基因组扰动和筛选方法。 结合了混合扰动与单细胞阵列成像分析的主要优点的概念 具体来说,我们筛选汇集的基因组扰动(使用 CRISPR-Cas9)。 单向导RNA)使用显微镜读取表型并识别单细胞中受到干扰的基因 通过合成测序方法进行原位测序,这种方法具有高度可扩展性,因为。 试剂和仪器成本适中(现在全基因组只需几万美元) 在此,我们请求行政补充,以应用我们现有奖项中开发的技术。 与波士顿大学东北部的 Rob Davey 团队一起筛查细胞系的 SARS-CoV-2 感染 配备并积极研究高遏制病毒的新兴传染病实验室 这项关于抗病毒宿主细胞计划的工作属于该研究的科学范围。 我们将紧密协调光学联合筛选在多个生物模型中的快速执行。 Davey 博士正在进行的传统 CRISPR 基因组筛选活动,数据丰富的全基因组光学。 筛选数据将确定整个病毒生命周期中 SARS-CoV-2-宿主界面的新方面并推进 我们对治疗候选者的理解以及支持新治疗假设的产生 应对 COVID-19 大流行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Clark Blainey其他文献

Paul Clark Blainey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Clark Blainey', 18)}}的其他基金

Targeting Dysregulated RNA Splicing in Neurodegenerative Diseases
靶向神经退行性疾病中失调的 RNA 剪接
  • 批准号:
    10729566
  • 财政年份:
    2023
  • 资助金额:
    $ 35.78万
  • 项目类别:
Stitch-seq for genome-wide pooled genomic screening with RNA-seq readout
Stitch-seq 通过 RNA-seq 读数进行全基因组汇集基因组筛选
  • 批准号:
    10413630
  • 财政年份:
    2022
  • 资助金额:
    $ 35.78万
  • 项目类别:
Stitch-seq for genome-wide pooled genomic screening with RNA-seq readout
Stitch-seq 通过 RNA-seq 读数进行全基因组汇集基因组筛选
  • 批准号:
    10620301
  • 财政年份:
    2022
  • 资助金额:
    $ 35.78万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 2 Engineering antibiotic sensitization therapies
改变抗生素发现的创新技术。
  • 批准号:
    10463689
  • 财政年份:
    2019
  • 资助金额:
    $ 35.78万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 2 Engineering antibiotic sensitization therapies
改变抗生素发现的创新技术。
  • 批准号:
    10242004
  • 财政年份:
    2019
  • 资助金额:
    $ 35.78万
  • 项目类别:
Innovative technologies to transform antibiotic discovery. Project 2 Engineering antibiotic sensitization therapies
改变抗生素发现的创新技术。
  • 批准号:
    10670189
  • 财政年份:
    2019
  • 资助金额:
    $ 35.78万
  • 项目类别:
Automated and sensitive genomic co-profiling for precision pharmacogenomics
用于精准药物基因组学的自动化、灵敏的基因组共同分析
  • 批准号:
    9303306
  • 财政年份:
    2016
  • 资助金额:
    $ 35.78万
  • 项目类别:
Microfluidic sample preparation for genomic sequencing of clinical pathogen isolates
用于临床病原体分离株基因组测序的微流控样品制备
  • 批准号:
    9018768
  • 财政年份:
    2016
  • 资助金额:
    $ 35.78万
  • 项目类别:

相似国自然基金

Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
  • 批准号:
    82300182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
  • 批准号:
    10797938
  • 财政年份:
    2023
  • 资助金额:
    $ 35.78万
  • 项目类别:
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
  • 批准号:
    10495114
  • 财政年份:
    2023
  • 资助金额:
    $ 35.78万
  • 项目类别:
Resources, Workforce Development, and Animal Models for the Rutgers RBL
罗格斯大学 RBL 的资源、劳动力发展和动物模型
  • 批准号:
    10793863
  • 财政年份:
    2023
  • 资助金额:
    $ 35.78万
  • 项目类别:
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
  • 批准号:
    10593622
  • 财政年份:
    2023
  • 资助金额:
    $ 35.78万
  • 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
  • 批准号:
    10748433
  • 财政年份:
    2023
  • 资助金额:
    $ 35.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了