Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
基本信息
- 批准号:10162611
- 负责人:
- 金额:$ 30.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-09-27
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingActive SitesAreaComplementComputer softwareConeCrystallizationCrystallographyDataData CollectionData SetDiagnosisDiagnostic radiologic examinationDiseaseDoseError SourcesEvolutionGenerationsGeometryHumidityImageIn SituKnowledgeLigandsLightLightingMapsMeasuresMetalsMethodsMinorModelingMolecular ConformationMuramidaseNoisePhasePositioning AttributeProtein RegionProtocols documentationRadiation induced damageReactionResolutionRoentgen RaysSamplingSideSignal TransductionSolventsSourceSpottingsStructureSurfaceSynchrotronsSyncopeSystemTechnologyUpdateWeightWorkabsorptionbeamlinecomputerized toolsconformercurve fittingdensityelectron densityexperimental studyimprovedinterestmacromoleculemethod developmentnext generationnon-Nativenovelnovel strategiespreventsimulationstructural biologysuccessthree-dimensional modelingtrendvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Data collection in macromolecular crystallography is subject to significant systematic errors that prevent
successful data collection on many systems and, ultimately, limit the accuracy of resulting structures. Creating
simulation technologies that can account for these errors will have significant impact on three fronts: 1) solving
new structures by better accounting for radiation damage, which is responsible for 80% of failed anomalous
phasing attempts, 2) improving multi-crystal averaging by simulating non-isomorphism, which will open the
gateway to arbitrary gains in signal-to-noise, 3) discriminating hotly contested alternative interpretations such
as the presence or absence of a bound ligand, by creating simulations with more realistic solvent models. To
move towards “damage-free data” from a synchrotron, we will start by calibrating radiation damage curves on
model and DBP samples. Using these curves we will incorporate realistic 3D models of radiation damage to
non-cuboid crystals (RADDOSE 3D) into our diffraction image simulator (MLFSOM) to yield a 3D Dose
Distribution and Illumination map along the crystal. This will result in a new generation of wavelength-
dependent absorption factors for the crystal to complement existing absorption corrections. At the beamline,
we will measure a 3D map of the crystal using cone beam online x-ray absorption radiography and a 2D map
of the beam profile. These advances will allow us to generate zero-dose extrapolation values, in an open
format, that account for experimental crystal and beam geometry. To improve multi-crystal averaging, we will
begin by characterizing how non-isomorphism varies as a function of humidity, radiation damage, and
functional state. By updating the classic “Crick and Magdoff” simulations of non-isomorphism with increasing
complexity, we will develop a singular value decomposition approach to parameterize non-isomorphism. Using
the corrections derived from this analysis, we will correct the non-isomorphism present in multi-crystal
experiments, enabling the determination of novel structures, including those collected using serial
crystallography at next-generation light sources. To enable enhanced simulation for robust interpretation of
experimental data, we will leverage new solvent models in macromolecular crystallography and small angle X-
ray scattering. Our work will create standard protocols for comparing solvent density to alternative
interpretations and to quantitatively assess how likely each simulated situation is compared to the real
macromolecular crystallography or SAXS data. In addition to distinguishing between different interpretations of
the experimental data, improving solvent models will enhance understanding of how macromolecules influence
and interact with other molecules near their surface. Collectively, we expect the benefits of eliminating these
critical systematic errors be transformative to both methods development and functional studies.
项目概要/摘要
大分子晶体学中的数据收集容易出现严重的系统错误,从而妨碍
在许多系统上成功收集数据,最终限制了生成结构的准确性。
能够解释这些错误的仿真技术将对三个方面产生重大影响:1)解决
更好地考虑辐射损伤的新结构,辐射损伤是造成 80% 失败异常的原因
定相尝试,2)通过模拟非同构来改进多晶平均,这将打开
通往信噪比任意增益的门户,3)区分激烈争议的替代解释,例如
通过使用更真实的溶剂模型创建模拟来确定是否存在结合配体。
从同步加速器移动“无损伤数据”,我们将从校准辐射损伤曲线开始
使用这些曲线,我们将把辐射损伤的真实 3D 模型融入到模型和 DBP 样本中。
非长方体晶体 (RADDOSE 3D) 到我们的衍射图像模拟器 (MLFSOM) 中以产生 3D 剂量
沿着晶体的分布和照明图这将产生新一代的波长-
晶体的相关吸收因子可补充光束线处的现有吸收校正。
我们将使用锥形束在线 X 射线吸收射线照相术和 2D 图来测量晶体的 3D 图
这些进步将使我们能够在开放的情况下生成零剂量外推值。
格式,考虑了实验晶体和光束几何形状,为了改进多晶体平均,我们将
首先描述非同构如何随湿度、辐射损伤和
通过更新非同构的经典“克里克和马格多夫”模拟,增加功能状态。
复杂性,我们将开发一种奇异值分解方法来参数化非同构。
根据该分析得出的修正,我们将修正多晶中存在的非同构现象
实验,能够确定新颖的结构,包括使用串行收集的结构
下一代光源的晶体学能够增强模拟以进行稳健的解释。
实验数据,我们将利用大分子晶体学和小角度X-中的新溶剂模型
我们的工作将创建用于比较溶剂密度与替代品的标准协议。
解释并定量评估每种模拟情况与真实情况相比的可能性
大分子晶体学或 SAXS 数据除了区分不同的解释之外。
根据实验数据,改进溶剂模型将增强对大分子如何影响的理解
总的来说,我们期望消除这些分子的好处。
关键的系统错误对于方法开发和功能研究来说都是变革性的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James M Holton其他文献
James M Holton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James M Holton', 18)}}的其他基金
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统错误
- 批准号:
9365573 - 财政年份:2017
- 资助金额:
$ 30.95万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
9707556 - 财政年份:2017
- 资助金额:
$ 30.95万 - 项目类别:
Eliminating Critical Systematic Errors In Structural Biology With Next-Generation Simulation
通过下一代模拟消除结构生物学中的关键系统误差
- 批准号:
10710387 - 财政年份:2017
- 资助金额:
$ 30.95万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 30.95万 - 项目类别:
Expanding the Catalytic Repertoire of Heme-based Dioxygenases
扩展血红素双加氧酶的催化能力
- 批准号:
10719622 - 财政年份:2023
- 资助金额:
$ 30.95万 - 项目类别:
Librational Mode Coupling Theory of Allosteric Signal Transmission
变构信号传输的解放模式耦合理论
- 批准号:
10360233 - 财政年份:2022
- 资助金额:
$ 30.95万 - 项目类别:
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
Covalent Inhibition as a Method to Counteract Botulinum Intoxication
共价抑制作为对抗肉毒杆菌中毒的方法
- 批准号:
10177867 - 财政年份:2020
- 资助金额:
$ 30.95万 - 项目类别: