A Photochemically 3D Printed High-Resolution Biodegradable Suture Retention Clip
光化学 3D 打印高分辨率可生物降解缝合线固定夹
基本信息
- 批准号:10157051
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAbscessAcidosisAffectAreaBiologicalCadaverCharacteristicsChronicCicatrixClinicalClipCrosslinkerDevelopmentDevice or Instrument DevelopmentDevicesDimensionsEngineeringEvaluationExcisionFailureFamily suidaeFasciaForeign BodiesFormulationFumaratesFundingGlycerolGoalsGrowthHerniaHistologicImplantIn VitroInfectionInflammationInterdisciplinary StudyIntuitionInvestigationKneeLasersLigamentsLightMass ChromatographyMechanicsMedicalMedical DeviceMolecular Sieve ChromatographyOperative Surgical ProceduresPainPalpablePatientsPerformancePhasePhysiologicalPlant ResinsPolymersProcessRecurrenceResolutionRiskRotator CuffSafetySamplingScanningScientistSecureSkinSmall Business Innovation Research GrantSpeedSterilizationSurfaceSurgeonSurgical suturesSwellingTechnologyTendon structureTestingThinnessTissue ModelTissuesToxicity TestsUnited StatesUnited States National Institutes of HealthVeterinariansViscosityWidthabdominal wallbasebiodegradable polymerbiomaterial compatibilityclinical practiceclinically relevantcostcrosslinkdesigndigitalexperienceimplantable devicein vivoirritationmechanical loadmechanical propertiesmolecular massnoveloperationphysical propertypoly(propylene fumarate)prematurepreventprototypereconstructionrepairedresponsesample fixationsoft tissuesuccesstissue repairverification and validationwound
项目摘要
Abstract: The goal of this SBIR Phase I project is to demonstrate the feasibility of creating a 3D printed,
biosynthetic Pronged Anchor-Clip to overcome the problems associated with large suture knots (knots from #5
suture, tape suture, and mesh suture). Currently large suture knots risk skin erosion, palpability, pain, scarring,
infection, and may even require re-operation for suture abscess. Replacing a knot with a much smaller device
that has a similar surface area as a knot but a much smaller volume without interstices for bacterial growth and
a better safety profile would have a significant impact in Surgery. Large sutures are typically used for tendon
repair in thin skinned areas such as achilles, rotator cuff, or knee, and for abdominal wall reconstruction.
Compared to competing anchoring technologies (e.g. staple, corkscrew, tack, and strap) the Pronged Anchor-
Clip has several advantages: it withstands soft-tissue loads exceeding the strength of competing devices and
the Pronged Anchor-Clip does not injure fascia when applied. The Pronged Anchor-Clip is easier and faster to
apply than tying a knot, and its intuitive design fits easily into clinical practice.
In addition to the surgical benefits of the project, we will create the first commercial biodegradable high-
resolution medical device manufactured by 3D printing. The proprietary co-crosslinker used in this proposal will
create a novel PPF resin that can then be 3D printed through digital light processing. This revolutionary new
PPF material can be used to create medical devices with micro-features that will eventually be resorbed by the
body. This would be unlike any other 3D printed biomedical device.
Through our multi-disciplinary collaboration, we will: optimize PPF formulations for 3D printing and confirm
design thresholds for the Pronged Anchor-Clip are met; characterize the 3D printed PPF Pronged Anchor-Clips
in benchtop testing for: mechanical properties; in vitro degradation rates; potential for infection; and clinically
relevant suture retention performance in cadaver tissue models; and lastly, demonstrate PPF Pronged Anchor-
Clips respond appropriately for bioincorporation, inflammation, and in vivo degradation in swine relative to a
predicate device, per FDA guidance document ISO 10993. At the completion of this proposal we will have
established manufacturing and performance proof points; demonstrating the PPF Pronged Anchor-Clip is
superior to a bulky knot. In a follow-on Phase II SBIR submission, we will complete validation and verification
testing, packaging and sterilization, toxicity testing, ISO 10993-Biological Evaluation of Medical Devices testing
and a chronic swine study for FDA 510(k) clearance of the class II device. Development of a biodegradable
fixation device with enhanced anchoring strength and reduced inflammation is urgently needed in the field of
soft-tissue repair and the proposed material has broader implications in the field of implantable devices.
摘要:SBIR I期项目的目标是证明创建3D打印的可行性,
生物合成固定锚纸夹以克服与大缝合结相关的问题(#5结。
缝合,胶带缝合线和网状缝合线)。目前,大型缝合结可能皮肤侵蚀,可触及,疼痛,疤痕,
感染,甚至可能需要重新操作缝合线脓肿。用小得多的设备代替结
它的表面积与结相似,但是没有细菌生长和
更好的安全性将对手术产生重大影响。大缝合线通常用于肌腱
在薄皮区域进行修复,例如致命弱点,肩袖或膝盖,以及用于腹壁重建。
与竞争锚定技术(例如,固定式,开瓶器,大头钉和皮带)相比
夹有几个优点:它承受超过竞争设备的强度的软组织负载和
施用时,固定的锚夹不会伤害筋膜。支撑的锚夹更容易,更快地
涂抹比打结,其直观设计易于适合临床实践。
除了该项目的外科手术益处外,我们还将创建第一个商业可生物降解的高级
通过3D打印制造的分辨率医疗设备。本提案中使用的专有联合交联链接将
创建一种新颖的PPF树脂,然后可以通过数字光处理打印3D。这个革命性的新
PPF材料可用于创建具有微功能的医疗设备
身体。这将与其他任何3D印刷生物医学设备不同。
通过我们的多学科合作,我们将:优化3D打印的PPF配方并确认
满足了支撑锚夹的设计阈值;表征3D打印的ppf pronged锚固条
在台式测试中:机械性能;体外降解率;感染的潜力;在临床上
在尸体组织模型中相关的缝合力保留性能;最后,展示了PPF的锚锚 -
相对于A
谓词设备,根据FDA指南文件ISO 10993。
建立的制造和绩效证明点;证明ppf的固定式纸条是
优于笨重的结。在随后的II阶段SBIR提交中,我们将完成验证和验证
测试,包装和灭菌,毒性测试,ISO 10993生物学评估医疗设备测试
以及一项针对II类设备清除FDA 510(K)清除的慢性猪研究。可生物降解的开发
在该领域迫切需要具有增强的锚定强度和减少炎症的固定装置
软组织修复和提议的材料在植入设备领域具有更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ruppert其他文献
David Ruppert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ruppert', 18)}}的其他基金
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
- 批准号:
10460582 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
A Biosynthetic Degradable Textile for Soft Tissue Reconstruction
用于软组织重建的生物合成可降解纺织品
- 批准号:
10325360 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
A Novel Hernia Mesh to Improve Anchor Point Fixation and Prevent Hernia Formation
一种新型疝气网可改善锚点固定并防止疝气形成
- 批准号:
9344908 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
相似国自然基金
直书写3D打印应变传感器性能退化机制与耐久性设计方法
- 批准号:12372078
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
3D打印工厂社群建模及其客户化大批量群智生产机理与方法
- 批准号:52375512
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全固态钠离子电池的3D打印制备及性能研究
- 批准号:52372090
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Metabolite sensing in a polymicrobial infection
多种微生物感染中的代谢物传感
- 批准号:
10443703 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Metabolite sensing in a polymicrobial infection
多种微生物感染中的代谢物传感
- 批准号:
10213693 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Metabolite sensing in a polymicrobial infection
多种微生物感染中的代谢物传感
- 批准号:
9976987 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别: