Simultaneous Targeting of Tumor and Stroma Cells to Enhance Solid Tumor CAR-T Cell Therapy
同时靶向肿瘤和基质细胞以增强实体瘤 CAR-T 细胞治疗
基本信息
- 批准号:10156815
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptive TransferAntigen TargetingAntigensArchitectureB-Cell LeukemiaBindingBiological AssayBiotechnologyCAR T cell therapyCD19 geneCarcinomaCell physiologyCellsChildhood Acute Lymphocytic LeukemiaCoculture TechniquesDHFR geneDNA SequenceDNA TransposonsDesmoplasticDevelopmentEngineeringFDA approvedFibroblastsFlow CytometryGenerationsGeneticHarvestHumanImmuneImmunotherapeutic agentImmunotherapyIn VitroInfiltrationMS4A1 geneMalignant NeoplasmsMalignant neoplasm of pancreasMeasuresMediatingMethotrexateMonitorMusPancreatic carcinomaPatient-Focused OutcomesPhasePlaguePopulationProcessProteinsPublishingRecurrenceResistanceResistance developmentSmall Business Innovation Research GrantSolid NeoplasmSpecificitySystemT cell responseT cell therapyT-Cell ActivationT-Cell DevelopmentT-LymphocyteTestingTherapeuticTissuesTumor BurdenTumor-infiltrating immune cellsUnited States National Institutes of HealthWeightWorkXenograft ModelXenograft procedurebasecancer biomarkerscancer typecell stromachimeric antigen receptorchimeric antigen receptor T cellsclinically relevantcommercial applicationcytotoxicengineered T cellsexhaustionexperienceexpression vectorfibroblast-activating factorflexibilityimprovedimproved outcomein vitro Assayin vivoineffective therapiesleukemia/lymphomamesothelinmouse modelmutantneoplastic cellnew technologynon-viral gene deliverynovelnovel therapeuticspancreatic cancer modelpreclinical studypreventreceptor expressionresponsestemsuccesstargeted cancer therapytherapy resistanttransgene expressiontumortumor growthtumor microenvironment
项目摘要
Abstract
The use of T cells engineered to express specific chimeric antigen receptors (CARs) to treat cancer has
generated durable cures for many types of cancer and resulted in the first FDA approved CAR-T cell therapy to
treat childhood acute lymphoblastic leukemia in 2017. Despite this success, CAR-T immunotherapies have been
much less effective at targeting solid tumors. Part of this limited success stems from the solid tumor
microenvironment, which forms a physical barrier to immune cell infiltration and produces soluble factors that
downregulate T cell activity and accelerate T cell exhaustion. While immunotherapies targeting solid tumors are
initially effective, the tumor microenvironment’s inhibition of T cells prevents these treatments from producing
durable responses. In this application, we propose a novel CAR-T cell therapy aimed to improve outcomes for
patients with advanced stage pancreatic cancer by overcoming the deficiencies that plague current CAR-T cell
therapies. To this end, we will engineer T cells to express multiple CARs, enabling these cells to target tumor
cells and cells in the immune-suppressive tumor microenvironment. Specifically, we will leverage the non-viral,
Tc Buster DNA transposon system to insert a large multicistronic genetic construct containing multiple CARs
and a selection marker into T cells. Using this platform, we will generate T cells with CARs targeting mesothelin
(MSLN), a protein expressed by 80-85% of pancreatic cancer tumors, and fibroblast activation protein (FAP), a
marker of cancer associated fibroblasts in the tumor microenvironment. We will then select a pure population of
T cells expressing MSLN- and FAP-CARs and determine the activity and specificity of these cells in vitro. We
expect that engineered T cells will generate a specific and robust response, eliciting cytotoxic functions only
against cells expressing their target antigen. We will then determine the efficacy of engineered T cells in vivo
using a xenograft mouse model to generate MSLN and FAP positive pancreatic carcinomas followed by adoptive
transfer of T cells. We expect immunotherapeutic delivery of bispecific T cells expressing FAP-CARs and MSLN-
CARs will elicit a robust and long-lasting T cell response against MSLN+/FAP+ solid tumors resulting in tumor
shrinkage and increased survival. Furthermore, we expect the development of a flexible, efficient, and reliable
process to generate bispecific T cells with a single, non-viral gene delivery approach will facilitate the emergence
of novel therapies to overcome many issues facing engineered T cell therapy today, including antigen escape
and target specificity.
抽象的
使用经过改造可表达特定嵌合抗原受体 (CAR) 的 T 细胞来治疗癌症
为许多类型的癌症提供了持久的治疗方法,并导致第一个 FDA 批准的 CAR-T 细胞疗法
2017 年治疗儿童急性淋巴细胞白血病。尽管取得了这一成功,但 CAR-T 免疫疗法
这种有限成功的部分原因在于实体瘤。
微环境,形成免疫细胞渗透的物理屏障,并产生可溶性因子
下调 T 细胞活性并加速 T 细胞耗竭,而针对实体瘤的免疫疗法则相反。
最初有效,肿瘤微环境对 T 细胞的抑制阻止了这些治疗产生
在此应用中,我们提出了一种新型 CAR-T 细胞疗法,旨在改善治疗结果。
通过克服困扰当前 CAR-T 细胞的缺陷,治疗晚期胰腺癌患者
为此,我们将改造 T 细胞来表达多种 CAR,使这些细胞能够靶向肿瘤。
具体来说,我们将利用非病毒、
Tc Buster DNA 转座子系统可插入包含多个 CAR 的大型多顺反子遗传构建体
使用这个平台,我们将生成带有靶向间皮素的 CAR 的 T 细胞。
(MSLN),一种由 80-85% 的胰腺癌肿瘤表达的蛋白质,以及成纤维细胞激活蛋白 (FAP),一种
然后我们将选择肿瘤微环境中癌症相关成纤维细胞的纯群体。
T 细胞表达 MSLN-和 FAP-CAR,并在体外确定这些细胞的活性和特异性。
预计工程化 T 细胞将产生特异性且强大的反应,仅引发细胞毒性功能
然后,我们将确定工程化 T 细胞在体内的功效。
使用异种移植小鼠模型产生 MSLN 和 FAP 阳性胰腺癌,然后过继
我们期望表达 FAP-CAR 和 MSLN- 的双特异性 T 细胞进行免疫治疗递送。
CAR 将引发针对 MSLN+/FAP+ 实体瘤的强大而持久的 T 细胞反应,从而导致肿瘤
此外,我们期望开发一种灵活、高效、可靠的解决方案。
使用单一非病毒基因传递方法生成双特异性 T 细胞的过程将促进出现
克服当今工程 T 细胞疗法面临的许多问题的新疗法,包括抗原逃逸
和目标特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole J. Shirkey-Son其他文献
Nicole J. Shirkey-Son的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
- 批准号:
10526155 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Modulating the PD-1/PD-L1 checkpoint to promote antitumor activity of HER2 CAR T cells in patients with sarcoma
调节PD-1/PD-L1检查点促进肉瘤患者HER2 CAR T细胞的抗肿瘤活性
- 批准号:
10562836 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Spatial genomic tools to interrogate T cell clonotypes, tumor clones and the microenvironment
用于询问 T 细胞克隆型、肿瘤克隆和微环境的空间基因组工具
- 批准号:
10565141 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
- 批准号:
10911713 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Mechanisms of Durable Antitumor Immunity Mediated by PI3K-targeted T cells
PI3K 靶向 T 细胞介导的持久抗肿瘤免疫机制
- 批准号:
10682190 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别: