Membrane Phospholipids: The Key Regulators of Tissue Factor Encryption/Decryption
膜磷脂:组织因子加密/解密的关键调节剂
基本信息
- 批准号:10153855
- 负责人:
- 金额:$ 45.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute myocardial infarctionAddressAntigensAtherosclerosisBiologyBloodBlood CellsBlood Coagulation DisordersBlood Coagulation FactorBlood Coagulation Factor VIIBlood coagulationCell membraneCell surfaceCellsCoagulantsCoagulation ProcessComplexDataDevelopmentDiabetes MellitusDiseaseDown-RegulationEndothelial CellsEnsureEnzyme Inhibitor DrugsEnzymesEpithelial CellsEquilibriumEventFactor IXFactor VIIaFactor XGenerationsGlycoproteinsHealthHemorrhageHemostatic AgentsHemostatic functionHydrolysisInfectionInflammationInflammatoryInterphase CellInterventionIschemic StrokeKineticsKnockout MiceKnowledgeLeadLipoxygenaseMaintenanceMalignant NeoplasmsMediatingMembraneMembrane MicrodomainsMetabolismMolecular ConformationMorbidity - disease rateMusPathogenesisPathway interactionsPericytesPharmacologyPhospholipidsPlasmaPlayPreventiveProcessProteinsPublishingRegulationResearchRoleSepsisSphingomyelinaseSphingomyelinsStimulusStructureTestingThromboplastinThrombosisThrombusTransgenic MiceUnstable anginaVascular Endothelial CellWild Type Mouseacid sphingomyelinaseatherogenesiscell injurycell typecofactorcohesionencryptionexperimental studyin vivoinhibitor/antagonistinsightmacrophagemicrovesiclesmonocytemortalitymouse modelnovelnovel therapeuticsoverexpressionpreventresponsesphingomyelin synthasesystemic inflammatory responsethrombotictranscription factorvascular injury
项目摘要
Upon vascular injury, plasma clotting factor VII (FVII) along with traces of activated FVII (FVIIa) come into
contact with the cofactor tissue factor (TF), which is expressed constitutively in cells within the vessel wall.
Complex formation of FVIIa with TF results in a marked enhancement of the catalytic activity of FVIIa and
triggers TF-mediated blood coagulation. Certain disease conditions induce TF expression in circulating blood
cells and vascular endothelial cells and thus allow direct contact between circulating blood and TF that leads
to thrombosis. While TF-mediated blood coagulation is essential to maintain hemostasis, the aberrant
activation of TF-mediated blood coagulation leads to thrombosis, the precipitating event in acute myocardial
infarction, ischemic stroke, and sepsis. Therefore, the proper regulation of TF expression and the activity is
critical for not only to the maintenance of the hemostatic balance but also for health in general. Typically, most
of the TF expressed in cells stays encrypted with very little procoagulant activity that is sufficient to achieve
hemostasis but not to cause intravascular coagulation. Cellular injury enhances TF procoagulant activity
greatly without altering TF antigen levels, i.e., transforming cryptic TF to prothrombotic TF. TF procoagulant
activity in cells is controlled dynamically by a variety of post-translational mechanisms. Our recent studies
revealed that sphingomyelin (SM) in the outer leaflet of the plasma membrane is responsible for maintaining
TF in an encrypted state and that hydrolysis of SM activates TF and releases TF+ microvesicles (MVs). SM
metabolism is altered in many disease settings, including atherosclerosis, diabetes, sepsis, and cancer, the
same disease settings that induce aberrant activation of TF. The current proposal is built on the above novel
findings and proposes to investigate the pathophysiologic relevance of SM metabolism in regulation of TF-
mediated hemostasis, thrombosis, and inflammation. Aim 1 focuses on elucidating mechanisms by which SM
metabolism regulates TF procoagulant activity, whereas Aim 2 investigates whether SM metabolism
influences hemostasis and thrombosis. Experiments proposed in Aim 3 will test the hypothesis that acute
inflammation-induced alterations in SM metabolism play a key role in TF activation and TF-mediated
coagulopathy. Aim 4 focuses on investigating whether altered SM metabolism contributes to inflammation via
the regulation of TF activity. In the proposed studies, we will manipulate SM levels in macrophages,
endothelial cells, and other cell types by the overexpression or down regulation of various enzymes involved
in the SM metabolism or using specific pharmacological inhibitors of these enzymes. We will employ various
knock-out mice with altered SM metabolism and murine models of hemostasis and thrombosis to investigate
the pathophysiologic relevance of the newly identified mechanism. Our proposed studies will lead to a
paradigm shift in our understanding of how TF-mediated coagulation is activated in various disease settings.
They may also lead to the development of novel, targeted interventions to prevent thrombosis.
血管损伤后,血浆凝血因子VII(FVII)以及激活的FVII(FVIIA)进入
与辅因子组织因子(TF)接触,该因子(TF)在容器壁中的细胞中组成型表达。
FVIIA与TF的复杂形成导致FVIIA和FVIIA催化活性的显着增强
触发TF介导的血液凝血。某些疾病状况诱导循环血液中的TF表达
细胞和血管内皮细胞,因此可以直接接触循环的血液和TF
进行血栓形成。尽管TF介导的血液凝结对于维持止血至关重要,但异常
TF介导的血液凝结的激活导致血栓形成,这是急性心肌的沉淀事件
梗塞,缺血性中风和败血症。因此,适当的TF表达和活性的调节是
不仅对维持止血平衡至关重要,而且对整个健康至关重要。通常,大多数
在细胞中表达的TF的存放量很少,几乎没有Procagulant活性,足以实现
止血,但不会引起血管内凝血。细胞损伤增强了TF Procagulant活性
极大地没有改变TF抗原水平,即将隐性TF转化为促血栓形成TF。 TF procogulant
细胞中的活性通过多种翻译后机制动态控制。我们最近的研究
揭示了质膜外部小叶中的鞘磷脂(SM)负责维持
TF处于加密状态,SM的水解激活TF并释放TF+微泡(MVS)。 SM
在许多疾病环境中,代谢有所改变,包括动脉粥样硬化,糖尿病,败血症和癌症,
相同诱导TF异常激活的疾病环境。当前的提议建立在上述小说上
发现和提议研究SM代谢在调节TF-的病理生理相关性
介导的止血,血栓形成和炎症。 AIM 1专注于阐明SM的机制
代谢调节TF Procagulant活性,而AIM 2研究了SM代谢是否是否代谢
影响止血和血栓形成。 AIM 3中提出的实验将检验急性的假设
炎症诱导的SM代谢改变在TF激活中起关键作用,而TF介导
凝血病。 AIM 4专注于研究改变的SM代谢是否导致炎症
TF活性的调节。在拟议的研究中,我们将操纵巨噬细胞中的SM水平,
内皮细胞和其他细胞类型通过涉及的各种酶的过表达或调节
在SM代谢或使用这些酶的特定药理抑制剂中。我们将雇用各种
用改变的SM代谢和止血和血栓形成的鼠模型的淘汰小鼠进行调查
新确定的机制的病理生理相关性。我们提出的研究将导致
我们对在各种疾病环境中如何激活TF介导的凝血的理解的范例转移。
它们还可能导致开发新颖的有针对性干预措施以防止血栓形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijaya Mohan Rao Lella其他文献
Vijaya Mohan Rao Lella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vijaya Mohan Rao Lella', 18)}}的其他基金
Tissue Factor's Role in the Pathogenesis of Hypercoagulability in COVID-19
组织因子在 COVID-19 高凝状态发病机制中的作用
- 批准号:
10448667 - 财政年份:2022
- 资助金额:
$ 45.7万 - 项目类别:
Tissue Factor's Role in the Pathogenesis of Hypercoagulability in COVID-19
组织因子在 COVID-19 高凝状态发病机制中的作用
- 批准号:
10580840 - 财政年份:2022
- 资助金额:
$ 45.7万 - 项目类别:
The Role of Gab2 Signaling in Thromboinflammation
Gab2 信号传导在血栓炎症中的作用
- 批准号:
10448670 - 财政年份:2022
- 资助金额:
$ 45.7万 - 项目类别:
Membrane Phospholipids: The Key Regulator of Tissue Factor Encryption/Decryption
膜磷脂:组织因子加密/解密的关键调节剂
- 批准号:
9054915 - 财政年份:2015
- 资助金额:
$ 45.7万 - 项目类别:
Membrane Phospholipids: The Key Regulators of Tissue Factor Encryption/Decryption
膜磷脂:组织因子加密/解密的关键调节剂
- 批准号:
10401806 - 财政年份:2015
- 资助金额:
$ 45.7万 - 项目类别:
Membrane Phospholipids: The Key Regulator of Tissue Factor Encryption/Decryption
膜磷脂:组织因子加密/解密的关键调节剂
- 批准号:
8885418 - 财政年份:2015
- 资助金额:
$ 45.7万 - 项目类别:
Membrane Phospholipids: The Key Regulators of Tissue Factor Encryption/Decryption
膜磷脂:组织因子加密/解密的关键调节剂
- 批准号:
10615732 - 财政年份:2015
- 资助金额:
$ 45.7万 - 项目类别:
Factor VIIa interaction with Endothelial Cell Protein C Receptor
因子 VIIa 与内皮细胞蛋白 C 受体的相互作用
- 批准号:
9328143 - 财政年份:2012
- 资助金额:
$ 45.7万 - 项目类别:
Factor VIIa Interaction with Endothelial Cell Protein C Receptor
因子 VIIa 与内皮细胞蛋白 C 受体的相互作用
- 批准号:
8403678 - 财政年份:2012
- 资助金额:
$ 45.7万 - 项目类别:
Factor VIIa Interaction with Endothelial Cell Protein C Receptor
因子 VIIa 与内皮细胞蛋白 C 受体的相互作用
- 批准号:
8600719 - 财政年份:2012
- 资助金额:
$ 45.7万 - 项目类别:
相似国自然基金
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长链非编码RNA MIPRL在急性心肌梗塞中的作用及分子机制
- 批准号:81870275
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Cdx2+胎盘干细胞移植治疗急性心肌梗塞的实验研究
- 批准号:81270281
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
LPA在急性心梗诱发心律失常中的作用及其电生理机制
- 批准号:81170163
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
心肌缺氧/再灌注与细胞移植多功能集成微流控芯片模型构建及应用
- 批准号:21175107
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Long-term exposure to arsenic, and the co-occurrence of uranium, in public and private drinking water: associations with cardiovascular and chronic kidney diseases in the California Teachers Study
公共和私人饮用水中长期接触砷以及同时存在铀:加州教师研究中与心血管和慢性肾脏疾病的关联
- 批准号:
10677410 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
Mindfulness and Behavior Change to Reduce Cardiovascular Disease Risk in Older People with HIV
正念和行为改变可降低老年艾滋病毒感染者的心血管疾病风险
- 批准号:
10762220 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别: