Metabolic coupling of neuronal ion transport
神经元离子转运的代谢耦合
基本信息
- 批准号:10155101
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportActive Ion TransportAcuteAddressAffectBioinformaticsBiosensorBrainBuffersCKB geneCRISPR/Cas technologyCarbohydratesCarrier ProteinsCell membraneCellsConsumptionCoupledCouplesCouplingCreatine KinaseCytoplasmic GranulesDataData AnalysesDependenceDevelopmentDyesElectrophysiology (science)EnvironmentEnzymesEpilepsyEventFeedbackFellowshipFunctional disorderGenesGlycolysisHigh Fat DietHippocampus (Brain)HomeostasisImmersionIndividualIon ChannelIon TransportIonsIsoenzymesJournalsKnock-outKnockout MiceKnowledgeLeadershipLearningMeasuresMediatingMembraneMetabolicMetabolic PathwayMicroscopyMitochondriaNa(+)-K(+)-Exchanging ATPaseNeurodegenerative DisordersNeuronsOxidative PhosphorylationPathologyPharmacologyProcessProductionPumpRNAReactionReducing dietResearchRestRoleSignal TransductionSliceSourceSynapsesTherapeuticTimeTissuesTrainingTransport ProcessWorkWritingadenylate kinasebrain cellcareerexperienceexperimental studyfluorescence lifetime imaginginhibitor/antagonistinnovationion dynamicsketogenic dietmedical schoolsmitochondrial metabolismneural circuitneuronal excitabilityneuronal metabolismneurotransmissionpostsynapticreceptorresponsesensorskillstwo-photonvoltage gated channel
项目摘要
Proper energy utilization and management by the brain is essential for neurons to process information and communicate effectively. It is well known that active ion transport activities consume enormous quantities of ATP during neuronal signaling to restore plasma membrane ion gradients and maintain cellular excitability, but how active ion transport is fueled by specific metabolic pathways and ATP buffering mechanisms is still controversial. This research fellowship aims to study two aspects of energy management during neuronal signaling: 1) whether active ion transport preferentially couples to ATP produced from glycolysis or from oxidative phosphorylation, and 2) whether creatine kinase and adenylate kinase buffer ATP during periods of intense energy demand. The proposed experiments will utilize two-photon fluorescence lifetime imaging of genetically encoded fluorescent biosensors and dyes to accurately quantify real-time metabolite and ion dynamics in hippocampal dentate granule neurons of acute brain slices following synaptic stimulation. Pharmacological strategies will then be employed to tease apart the contributions of specific active transport activities, ion channels, and metabolic pathways to the metabolite and ion sensor lifetime signals. Also, CRISPR-Cas9:sg RNA gene editing will be used to determine how ATP buffering in dentate granule neurons is affected by knockout of creatine kinase or adenylate kinase isozymes. Knowing whether neuronal active ion transport during signaling is differentially regulated by glycolysis or oxidative phosphorylation, and whether it is supported by ATP-buffering enzymes, is important for detailing how neuronal excitability is regulated by different metabolic fuels, and will have implications for understanding how the metabolic alterations resulting from a ketogenic diet – a very-low- carbohydrate, high-fat diet – are therapeutic for epilepsy. This knowledge will also help to determine the underlying pathophysiological mechanisms of neurodegenerative disorders that are associated with energetic dysfunction. This fellowship training plan contains numerous outside-the-lab activities to aid the awardee's scientific development and allow for continued learning, including courses on neural circuits, microscopy, bioinformatics skills for data analysis, scientific writing, lab leadership, and many others. Weekly department seminars and journal clubs will allow the awardee to learn about related research and receive feedback about their data and hypotheses. The research environment of Harvard Medical School will provide the awardee with an immersive learning and training experience that will facilitate their transition into the next stage of their career.
大脑适当的能量利用和管理对于神经元进行处理并有效地交流。途径和ATP缓冲机制仍有争议。遗传编码的生物传感器的寿命成像,并准确地量化了急性bra刺刺激性刺激的实时MET-IND动力学颗粒神经元。 ATP Buffere神经元如何受到肌酸激酶或腺苷酸激酶同工酶的敲除。对生酮饮食的代谢改变的影响 - 一种非常低的碳水化合物,高脂饮食 - 癫痫的治疗方法将确定神经退行性疾病的基本病理学机制。在神经巡回赛上,显微镜,数据分析的生物信息学,科学写作,实验室领导和其他许多人都可以学习相对,并收到有关其数据和假设的反馈。培训经验他们过渡到职业生涯的下一阶段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan John Meyer其他文献
Dylan John Meyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan John Meyer', 18)}}的其他基金
相似国自然基金
全钒液流电池内多物理过程规律与活性离子传输管理及电池优化研究
- 批准号:51876159
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
跨膜人工阴离子通道的构筑与性质
- 批准号:21072090
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10676910 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10487518 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
- 批准号:
10593062 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
- 批准号:
10397642 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10340461 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别: