次数付きリー代数の表現論に基づく可積分系の研究
基于有序李代数表示论的可积系统研究
基本信息
- 批准号:23K03217
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
会沢 成彦其他文献
会沢 成彦的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('会沢 成彦', 18)}}的其他基金
量子群の共変量の性質とその応用
量子群协变量的性质及其应用
- 批准号:
07740040 - 财政年份:1995
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
整環の表現論の傾理論による深化
利用倾斜理论深化代数的表示理论
- 批准号:
23K22384 - 财政年份:2024
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
物語論的なアプローチによるウィンザー・マッケイの表現手法の研究
从叙事学角度研究温莎·麦凯的表达方法
- 批准号:
24K03459 - 财政年份:2024
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
「自立活動」における即興表現を中心とした音楽療法的活動のための理論構築
以“独立活动”即兴表达为中心的音乐治疗活动理论构建
- 批准号:
24K05999 - 财政年份:2024
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
マルチスケール時空間経済系における粒子・流体表現を統合したメカニズム設計理論
多尺度时空经济系统中粒子与流体表征相结合的机制设计理论
- 批准号:
24K00999 - 财政年份:2024
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)