Spectral Analysis on the Schroedinger Operators with Matrix Coefficients and Its Applications
带矩阵系数的薛定谔算子的谱分析及其应用
基本信息
- 批准号:23540204
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I had studied the Schroedinger operators with matrix coefficients in the light of the problems for controlling and transporting qubit. As for the former problem, I had made spectral analysis for the Rabi model and the Janes-Cummings model describing a 2-level (artificial) atom coupled with a 1-mode photon. I had investigated the mathematical properties on the energy as the coupling strength between the atom and the photon get larger. As for the latter problem, I had performed the research into the characterization of the quantum tunneling phase factor and the clarification of its mathematical properties.
针对量子比特的控制和传输问题,我研究了带有矩阵系数的薛定谔算子。对于前一个问题,我对描述 2 能级(人造)原子与 1 模光子耦合的 Rabi 模型和 Janes-Cummings 模型进行了光谱分析。我研究了原子和光子之间的耦合强度变大时能量的数学特性。对于后一个问题,我对量子隧道相位因子的表征及其数学性质进行了研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunnel-Junction Formulae with Application to Spintronic Qubit
隧道结公式及其在自旋电子量子位中的应用
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:M. Hirokawa
- 通讯作者:M. Hirokawa
One-Dimensional Tunnel-Junction Formula for Schringer Particle
施林格粒子的一维隧道结公式
- DOI:10.1088/1742-6596/302/1/012044
- 发表时间:2013
- 期刊:
- 影响因子:1.9
- 作者:M. Hirokawa;T. Kosaka
- 通讯作者:T. Kosaka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKAWA Masao其他文献
HIROKAWA Masao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKAWA Masao', 18)}}的其他基金
Operator and Spectral Analyses for Differential Operators with Matrix-Coefficient
具有矩阵系数的微分算子的算子和谱分析
- 批准号:
26400117 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator-Analytical Study of Singularities Appearing in Quantum Theory
量子理论中奇点的算子分析研究
- 批准号:
20540171 - 财政年份:2008
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Operator-Theoretical Research of Two-Body System in Non-Relativistic Quantum Field Theory
非相对论量子场论中二体系统算子理论研究
- 批准号:
18540180 - 财政年份:2006
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
OPERATOR-ANALYTICAL STUDY OF SINGULARITIES OF HAMILTONIANS IN QUANTUM PHYSICS
量子物理中哈密尔顿奇点的算子分析研究
- 批准号:
13640215 - 财政年份:2001
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Mathematical Research on Deep-Strong Coupling Regime of Interaction between Artificial Atom and Photon in Circuit QED
电路QED中人造原子与光子相互作用深强耦合机制的数学研究
- 批准号:
20K03768 - 财政年份:2020
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Interaction and number, representation theory, discrete dynamics
量子相互作用与数、表示论、离散动力学
- 批准号:
20K03560 - 财政年份:2020
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Joint Research into Mathematical Science for Qunatum Information Devices
量子信息器件数学科学联合研究
- 批准号:
26310210 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Operator and Spectral Analyses for Differential Operators with Matrix-Coefficient
具有矩阵系数的微分算子的算子和谱分析
- 批准号:
26400117 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)