The structure of pseudo-Riemannian symmetric spaces and holonomy groups

伪黎曼对称空间和完整群的结构

基本信息

项目摘要

No abstract available
没有可用的摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Ines Kath其他文献

Professorin Dr. Ines Kath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Ines Kath', 18)}}的其他基金

Invariant symplectic structures and metrics on Lie groups
李群上的不变辛结构和度量
  • 批准号:
    229604565
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strukturtheorie für metrische Lie-Algebren Strukturtheorie für symmetrische Tripel
度量李代数的结构理论 对称三元组的结构理论
  • 批准号:
    5312288
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships

相似国自然基金

螺旋藻多糖对猪伪狂犬病毒感染免疫细胞IL-17信号通路相关LncRNA及组蛋白表观修饰调控的分子机制
  • 批准号:
    32360894
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
随机图与伪随机图上的极值问题
  • 批准号:
    12371341
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
激光触发伪火花开关的触发及放电特性研究
  • 批准号:
    52377159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
沥青路面铣刨回收料的“伪集料”现象:表征、机制和性能研究
  • 批准号:
    52368064
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
EGFR介导伪狂犬溶瘤病毒肿瘤靶向性杀伤的分子机制研究
  • 批准号:
    82304367
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

On the fundamental group and non-negativity of curvature for pseudo-Riemannian submersion
关于伪黎曼淹没的基本群和曲率非负性
  • 批准号:
    20K14315
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorial analysis of proper actions on pseudo-Riemannian symmetric spaces
伪黎曼对称空间上适当作用的组合分析
  • 批准号:
    16K17594
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
CAREER: Frontiers of rigidity in pseudo-Riemannian, conformal, and parabolic geometries
职业生涯:伪黎曼几何、共角几何和抛物线几何中的刚性前沿
  • 批准号:
    1255462
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Holonomy groups and special structures in pseudo-Riemannian geometry
伪黎曼几何中的完整群和特殊结构
  • 批准号:
    FT110100429
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Scalar invariants in pseudo-Riemannian spaces
伪黎曼空间中的标量不变量
  • 批准号:
    408255-2011
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了