Moduli of sheaves on a cubic fourfold and irreducible symplectic manifolds

三次四重不可约辛流形上的滑轮模

基本信息

  • 批准号:
    17K05212
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
マインツ大学数学研究所(ドイツ)
美因茨大学数学研究所(德国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Rational normal quintics on a cubic 4-fold and related coherent sheaves
三次四次及相关相干滑轮上的有理正态五次方程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujimori S.;Hertrich-Jeromin U.;Kokubu M.;Umehara M.;Yamada K.;Yasunari Nagai
  • 通讯作者:
    Yasunari Nagai
マインツ大学 数学研究所(ドイツ)
美因茨大学数学研究所(德国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nagai Yasunari其他文献

Nagai Yasunari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Categorification of cohomological Donaldson--Thomas invariants
上同调唐纳森--托马斯不变量的分类
  • 批准号:
    22KJ0616
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数的ファイバー空間のK安定性の研究とそのモジュライ空間への応用
代数纤维空间K稳定性研究及其在模空间中的应用
  • 批准号:
    22KJ1929
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
正則シンプレクティック多様体の射影モデルと退化の研究
正则辛流形的投影模型与简并性研究
  • 批准号:
    22K03240
  • 财政年份:
    2022
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Galois representations of Kummer-faithful fields and their moduli
库默忠实域及其模的伽罗瓦表示研究
  • 批准号:
    19K03397
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum algebras and moduli theory
量子代数和模理论
  • 批准号:
    19K03399
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了