Study of blow-up rings

气胀环的研究

基本信息

  • 批准号:
    19540054
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

Commutative Algebra is one of the branches of algebra, which works on the sets equipped with two binary operations, such that addition and multiplication, such as the sets of numbers and the sets of functions. The purpose is to explore the structure of these sets with view-point from two binary operations. This is a very abstract approach but it contains good applications, like cryptography, to real societies. I have posed three concrete problems and have been trying to solve them. I obtain rather excellent and big results, which I have reported in several conferences of abroad.
交换代数是代数的分支之一,它研究具有两个二元运算的集合,例如加法和乘法,例如数字集合和函数集合。目的是从两个二元运算的角度探索这些集合的结构。这是一种非常抽象的方法,但它包含对现实社会的良好应用,例如密码学。我提出了三个具体问题并一直在努力解决它们。我取得了相当优秀和大的成果,并在国外的多个会议上进行了报道。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The leading ideal of a complete intersection of height two ina 2-dimensional regular local ring
二维正局部环高度二完全交集的先导理想
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Goto; W. Heinzer; M.
  • 通讯作者:
    M.
Sally modules of rank one
一级莎莉模块
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goto; K.Nishida;K.Ozeki
  • 通讯作者:
    K.Ozeki
Study of Hilbert functions and coefficients of parameters IV
希尔伯特函数和参数IV系数的研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤四郎
  • 通讯作者:
    後藤四郎
Quasi-socle ideals in numerical semi group rings
数值半群环中的拟基理想
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤四郎; 木村了; 松岡直之
  • 通讯作者:
    松岡直之
Quasi-socle ideals in a Gorenstein local ring
Gorenstein 本地环中的准社会理想
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    後藤四郎; 松岡直之; 高橋亮
  • 通讯作者:
    高橋亮
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GOTO Shiro其他文献

GOTO Shiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GOTO Shiro', 18)}}的其他基金

Commutative algebra - towards a better understanding of non-Cohen-Macaulay rings
交换代数 - 更好地理解非科恩-麦考利环
  • 批准号:
    22540054
  • 财政年份:
    2010
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Blowing-up rings
吹胀环的研究
  • 批准号:
    13640044
  • 财政年份:
    2001
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of blow-up rings
气胀环的研究
  • 批准号:
    11640049
  • 财政年份:
    1999
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Rees algebras and form rings
里斯代数和形环的研究
  • 批准号:
    09640071
  • 财政年份:
    1997
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

和算代数化几何及其中算源流研究
  • 批准号:
    12371001
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
特征为正的多元zeta函数值:Hopf代数结构的研究及其欧拉性相关猜想的证明与应用
  • 批准号:
    12301015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于表示无限型自入射代数上的单纯系统的研究
  • 批准号:
    12301044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

超準的手法を用いた代数多様体の特異点の研究
使用超实体方法研究代数簇的奇点
  • 批准号:
    24KJ1040
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数的無理数の実効的な有理近似と指数型ディオファントス方程式
代数无理数和指数丢番图方程的有效有理逼近
  • 批准号:
    24K06642
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
双曲的代数曲線の遠アーベル的内在性の研究
双曲代数曲线的远阿贝尔内在性研究
  • 批准号:
    24K06668
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多重複素解析学の代数解析的研究
多元分析的代数分析研究
  • 批准号:
    24K06770
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
最適化アルゴリズムと凸代数幾何
优化算法和凸代数几何
  • 批准号:
    24K06841
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了