Integrable Systems and Combinatorial Representation Theory

可积系统和组合表示理论

基本信息

  • 批准号:
    18540030
  • 负责人:
  • 金额:
    $ 2.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

During the period of research project, we mainly obtained the following results.1. [Affine geometric crystal]In collaboration with M. Kashiwara and T. Nakashima, we constructed geometric crystals associated to nonexceptional affine Lie algebras. We confirmed that the ultra-discrete limit of these geometric crystals coincide with the limit of previously known perfect crystals. Moreover, except type C, we obtained explicit formulas for birational maps, called tropical R maps, that satisfy the Yang-Baxter equation.2. [Existence of crystal bases of the KR modules for nonexceptional types]There was a conjecture saying that any finite-dimensional representation of a quantum affirm algebra that has an integer multiple of a level 0 fundamental weight as highest weight (KR module) has a crystal base. We solved this conjecture for all affine Lie algebras of nonexceptional types. In collaboration with A. Schilling, we also proved that the crystals of type B^<(1)>_n, D^<(1)>_n, and A^<(2)>_<2n-1> are isomorphic to the combinatorial crystals recently constructed by Schilling.3. [Construction of the coherent family of perfect crystals for exceptional types]In collaboration with M. Kashiwara, K.C. Misra and D. Yamada, we revealed the crystal structure of the perfect crystals associated to the exceptional affine lie algebra D^<(3)>_4 at any level.
在课题研究期间,我们主要取得了以下成果: 1. [仿射几何晶体]与M. Kashiwara和T. Nakashima合作,我们构建了与非例外仿射李代数相关的几何晶体。我们确认这些几何晶体的超离散极限与先前已知的完美晶体的极限一致。此外,除C型外,我们还得到了满足Yang-Baxter方程的双有理图的显式公式,称为热带R图。 2. [非例外类型 KR 模块的晶体基的存在]有一个猜想说,任何以 0 级基本权重作为最高权重(KR 模块)的整数倍的量子肯定代数的有限维表示都具有晶体根据。我们针对所有非例外类型的仿射李代数解决了这个猜想。与 A. Schilling 合作,我们还证明了 B^<(1)>_n、D^<(1)>_n 和 A^<(2)>_<2n-1> 类型的晶体同构于Schilling最近构建的组合晶体。3. [为特殊类型构建连贯的完美晶体家族]与 M. Kashiwara, K.C. 合作Misra 和 D. Yamada,我们揭示了与任何级别的特殊仿射李代数 D^<(3)>_4 相关的完美晶体的晶体结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection
Kerov-Kirillov-Reshetikhin 双射的晶体解释
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Okado; et al.
  • 通讯作者:
    et al.
Existence of Kirillov-Reshetikhin crystals for nonexceptional types
非特殊类型的基里洛夫-列谢蒂欣晶体的存在
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.; Okado; et. al.
  • 通讯作者:
    et. al.
Combinatorial Aspect of Integrable Systems
可积系统的组合方面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Okado; et al.
  • 通讯作者:
    et al.
Perfect crystals for U_q (D^(3)_4)
U_q (D^(3)_4) 的完美晶体
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Okado; et. al.
  • 通讯作者:
    et. al.
Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection
Kerov-Kirillov-Reshetikhin 双射的晶体解释
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.; Kuniba; et. al.
  • 通讯作者:
    et. al.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADO Masato其他文献

OKADO Masato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADO Masato', 18)}}的其他基金

New developments in the study of quantum groups
量子群研究新进展
  • 批准号:
    19K03426
  • 财政年份:
    2019
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approach to the polynomials related to representation theory from quantum integrable systems
量子可积系统表示论相关多项式的探讨
  • 批准号:
    23654007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
  • 批准号:
    23340007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
  • 批准号:
    20540016
  • 财政年份:
    2008
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial Study of Crystal Bases and its Application to Discrete Integrable Systems
晶体基的组合研究及其在离散可积系统中的应用
  • 批准号:
    14540026
  • 财政年份:
    2002
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine Lie algebra characters and Bethe Ansatz
仿射李代数字符和 Bethe Ansatz
  • 批准号:
    11640027
  • 财政年份:
    1999
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial Studies of Demazure Modules
Demazure 模块的组合研究
  • 批准号:
    09640034
  • 财政年份:
    1997
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In Silico Study and Optimization of Molecular Nanomotors for Membrane Photopharmacology
膜光药理学分子纳米马达的计算机研究和优化
  • 批准号:
    10629113
  • 财政年份:
    2023
  • 资助金额:
    $ 2.46万
  • 项目类别:
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
  • 批准号:
    10679463
  • 财政年份:
    2023
  • 资助金额:
    $ 2.46万
  • 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 2.46万
  • 项目类别:
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
  • 批准号:
    23H05455
  • 财政年份:
    2023
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了