Mathematical Study of the Nonlinear Partial Differential Equations Arising in the Statistical Mechanics
统计力学中非线性偏微分方程的数学研究
基本信息
- 批准号:16340047
- 负责人:
- 金额:$ 6.67万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we provided a unified analysis to the critical phenomena, arising in the solution to the partial differential equation provided with the nonlinearity due to the self-interaction and the non-equilibrium. We formulate the mathematical principle across the hierarchy to control several phenomena common to many nonlinear problems. These problems are the mean field of stationary turbulence in high energy and of gauge field, Ricci flow, nonlinear parabolic equations, self-interacting fluids, material-energy transport, tumor growth, and nonlinear thermodynamics. Among them, we formulated the system of chemotaxis, derived in the context of th the formation of spores of the cellular slime molds, as the fundamental equation of the material transport subject to the mass conservation and the decrease of the free energy in the thermodynamics called Smoluchowski-Poisson equation and clarified the quantized blowup mechanism by developing various new methods of analysis. Then, we obtained the notions of the blowup envelope, formulation of the stationary and non-stationary states by the dual variation, hierarchical control of the stationary states upon the non-stationary states, which motivates the study on the structure and the stability of the set of stationary solutions of phenomenological equations concerning the critical phenomena arising in the non-equilibrium thermodynamics, formation of sub-collapses and the collision of collapses in the mean field equation arising in the gauge theory and turbulent theory and the semilinear parabolic equation with the critical Sobolev exponent, deformed quantization in the nonlinear parabolic equation with non-local term and the normalized Ricci flow, and mass quantization in higher dimensions.
在本研究项目中,我们对由于自相互作用和非平衡而具有非线性的偏微分方程的解中出现的临界现象进行了统一的分析。我们制定了跨层次的数学原理来控制许多非线性问题常见的几种现象。这些问题是高能稳态湍流和规范场的平均场、里奇流、非线性抛物线方程、自相互作用流体、物质-能量传输、肿瘤生长和非线性热力学。其中,我们制定了在细胞粘菌孢子形成的背景下推导的趋化系统,作为热力学中受质量守恒和自由能减少影响的物质传输的基本方程,称为Smoluchowski-Poisson 方程并通过开发各种新的分析方法阐明了量子化爆炸机制。然后,我们得到了爆炸包络线的概念,通过对偶变分表示稳态和非稳态状态,稳态对非稳态的层次控制,这激发了对结构和稳定性的研究。唯象方程的一组平稳解,涉及非平衡热力学中出现的临界现象、规范理论和湍流理论中出现的平均场方程中的子塌陷的形成和塌陷的碰撞以及具有临界 Sobolev 指数的半线性抛物型方程,具有非局部项和归一化 Ricci 流的非线性抛物型方程中的变形量化,以及更高维度的质量量化。
项目成果
期刊论文数量(156)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultradiscrete QRT maps and tropical elliptic curves
超离散 QRT 地图和热带椭圆曲线
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:A. Nobe
- 通讯作者:A. Nobe
Stability of the steady state for the Falk model-system of shape memory alloys
形状记忆合金 Falk 模型系统稳态的稳定性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:S. Yoshikawa; et. al.
- 通讯作者:et. al.
Global existence and uniqueness of solutions to the Maxwell-Schroedinger equations
麦克斯韦-薛定谔方程解的全局存在性和唯一性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:M. Nakamura; et. al.
- 通讯作者:et. al.
Global existence and uniqueness of solutions to the Maxwell-Schroedinger equations
麦克斯韦-薛定谔方程解的全局存在性和唯一性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:M.; Nakamura; et. al.
- 通讯作者:et. al.
An ultradiscretization of the sine-Gordon equation
正弦-戈登方程的超离散化
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S. Isojima; et. al.
- 通讯作者:et. al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUZUKI Takashi其他文献
SUZUKI Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUZUKI Takashi', 18)}}的其他基金
Possible growth signal transduction between Th17 cells and breast cancer cells
Th17细胞和乳腺癌细胞之间可能的生长信号转导
- 批准号:
19K09065 - 财政年份:2019
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-invasive quantitative in vivo optical imaging of cerebral blood flow and metabolism
脑血流和代谢的无创定量体内光学成像
- 批准号:
25870370 - 财政年份:2013
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and publicizing of the simple and low-priced drop-sizing system for dispersive two-phase flows utilizing an image sensor
利用图像传感器开发并宣传用于分散两相流的简单且低成本的液滴分级系统
- 批准号:
25420116 - 财政年份:2013
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyses on multiple factors related to evaluation of antioxidant function of northern berries
北方浆果抗氧化功能评价的多因素分析
- 批准号:
25292017 - 财政年份:2013
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on a system supporting visually impaired students in learning science and image-creation of scientific phenomena
支持视障学生学习科学和科学现象形象创作的系统研究
- 批准号:
24501163 - 财政年份:2012
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The research of acoustic diagnosis and noninvasive therapy for intractable pneumothorax
顽固性气胸的声学诊断及无创治疗研究
- 批准号:
23659307 - 财政年份:2011
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis of sex hormone actions in noninvasive breast carcinoma
性激素在非浸润性乳腺癌中的作用分析
- 批准号:
22590305 - 财政年份:2010
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the rapid measurement of stability of a refrigerant having low global warming potential
低温室效应制冷剂稳定性快速测量研究
- 批准号:
22510094 - 财政年份:2010
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Motor control method using kinetic energy storage for noiseless image in MR image guided robotic surgery
MR图像引导机器人手术中利用动能存储实现无噪声图像的电机控制方法
- 批准号:
20700413 - 财政年份:2008
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Perspectives on the Chinese Political Regime on Taisho Period
大正时期中国政治体制透视
- 批准号:
20730110 - 财政年份:2008
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似国自然基金
湍流层次结构的探索
- 批准号:10572135
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目