Study of algebraic varieties by log Hosge theory
用对数Hosge理论研究代数簇
基本信息
- 批准号:15340009
- 负责人:
- 金额:$ 9.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Generalizing toroidal compactifications of Hermitian symmetric domains by Mumford et al., Kazuya Kato and Usui constructed fine moduli spaces of polarized log Hodge structures (PLH, for short). Moreover, we constructed Borel-Serre compactifications and SL(2)-partial compactifications of Griffiths domains, and also a fundamental diagram of the relationship of all these enlarged spaces. This joint will be published as a book of almost 300 pages in the series of Ann. Math. Studies, Princeton University Press.Assuming the existence of a complete fan, Usui showed that the image of the extended period map, from a compactification of moduli of varieties of general type to the moduli of PLH, is a separated complex algebraic space. This observation shows in particular that, even if the moduli space of PLH has slits in this case, the image of the extended period map does not touch with these slits. This result was published in J. Alg. Geom. in 2006. The restriction of dimension in this paper is now removed and applicable for all dimensions by a recent great advance in minimal model theory.Generalizing SL(2)-orbit theorems of Schmid in pure case in one variable and of Cattani, Kaplan and Schmid in pure case in several variables, Kazuya Kato, Chikara Nakayama and Usui obtained SL(2)-orbit theorem in mixed case in several variables and an estimate of Hodge norm in this situation. This result is submitted.Masanori Asakura and Shuji Saito studied the Jacobian rings of open complete intersections and solved Beilinson's Hodge conjecture for sufficiently general open complete intersections. These results were publishes in Math.Zeit., in Math.Nachr., and in publication of London Math.Soc.
Kazuya Kato 和 Usui 推广了 Mumford 等人提出的 Hermitian 对称域的环形紧化,构造了极化对数 Hodge 结构(简称 PLH)的精细模空间。此外,我们还构建了 Griffiths 域的 Borel-Serre 紧化和 SL(2) 部分紧化,以及所有这些扩大空间的关系的基本图。该联合体将作为《安》系列近300页的书出版。数学。研究,普林斯顿大学出版社。 假设存在完全扇形,臼井表明,延长周期映射的图像,从一般类型的模的紧化到PLH的模,是一个分离的复代数空间。该观察特别表明,即使PLH的模空间在这种情况下具有狭缝,扩展周期图的图像也不与这些狭缝接触。该结果发表在《J. Alg》上。吉姆. 2006 年。由于最小模型理论最近的巨大进步,本文中的维数限制现已被消除并适用于所有维数。在一个变量的纯情况下推广 Schmid 的 SL(2) 轨道定理以及 Cattani、Kaplan 和Schmid 在多变量的纯情况下,Kazuya Kato、Chikara Nakayama 和 Usui 在多变量的混合情况下获得了 SL(2) 轨道定理以及这种情况下 Hodge 范数的估计。该结果已提交。Masanori Asakura 和 Shuji Saito 研究了开完全交集的雅可比环,并解决了充分一般开完全交集的 Beilinson 霍奇猜想。这些结果发表在 Math.Zeit.、Math.Nachr. 和 London Math.Soc 杂志上。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Noether-Lefschetz locus for Beilinson Hodge cycles, I
Beilinson Hodge 循环的 Noether-Lefschetz 轨迹,I
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Masanori Asakura; Shuji Saito
- 通讯作者:Shuji Saito
Generalized Jacobian rings for open complete intersections
用于开放完全交集的广义雅可比环
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:M.Asakura; S.Saito
- 通讯作者:S.Saito
Fibred rational surfaces with extremal Mordell-Weil lattices
具有极值 Mordell-Weil 晶格的纤维有理曲面
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Kazuhiro Konno; S.Kitagawa
- 通讯作者:S.Kitagawa
Generalized Jacobian rings for open complete intersections
用于开放完全交集的广义雅可比环
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:M.Asakura; S.Saito
- 通讯作者:S.Saito
Generalized Jacobian rings for open complete intersections
用于开放完全交集的广义雅可比环
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:朝倉政典; 斎藤秀司
- 通讯作者:斎藤秀司
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
USUI Sampei其他文献
USUI Sampei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('USUI Sampei', 18)}}的其他基金
Construction and evolution of log Hodge theory and applications of the fundamental diagram to geometry
对数Hodge理论的构建和演化及基本图在几何中的应用
- 批准号:
17K05200 - 财政年份:2017
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of mixed log Hodge structures and its applications
混合对数Hodge结构理论及其应用
- 批准号:
23340008 - 财政年份:2011
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of log mixed Hodge structures and its applications to geometry
对数混合Hodge结构理论及其在几何中的应用
- 批准号:
19340008 - 财政年份:2007
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Interactions of Algebraic Geometry, Hodge Theory and Logarithmic Geometry
代数几何、霍奇理论与对数几何的相互作用研究
- 批准号:
11304001 - 财政年份:1999
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Algebraic Geometry and Hodge Theory
代数几何和霍奇理论
- 批准号:
08304002 - 财政年份:1996
- 资助金额:
$ 9.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)