Research on p-adic properties of the numbers of permutation representations
排列表示数的p进数性质研究
基本信息
- 批准号:22540004
- 负责人:
- 金额:$ 2.75万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are three results. 1) p-adic properties of the number of homomorphisms from a finite abelian p-group to symmetric groups were obtained. In particular, the exponent of p of the decomposition of such numbers into prime factors was made clear. There are 6 different types of the results. 2) The exponent of 2 in the decomposition of one plus the number of involutions in alternating groups or wreath products of a cyclic group of order 2 by alternating groups groups into prime factors could be described as 2-adic integers. 3)p-adic properties of the number of homomorphisms from the direct product of two cyclic p-groups to wreath product of a cyclic p-group by symmetric groups were obtained. The results are closely related to that for the number of homomorphisms to symmetric groups.
共有三个结果。 1) 获得了从有限阿贝尔p群到对称群的同态数的p进性质。特别是,将这些数分解为质因数时的 p 指数是明确的。有 6 种不同类型的结果。 2) 将 1 加上交替群的对合数或 2 阶循环群的花圈乘积通过交替群群分解为素因子时的 2 的指数可以描述为 2-adic 整数。 3)得到了两个循环p-群的直积到一个循环p-群与对称群的环积的同态数的p-adic性质。该结果与对称群的同态数密切相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a theorem of P. Hall
关于 P. Hall 定理
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:T. Asai;N. Chigira;T. Niwasaki;and Y. Takegahara
- 通讯作者:and Y. Takegahara
2-adic properties for the number of solutions of x^m=1 in the alternating group A_n
交替群 A_n 中 x^m=1 的解数的 2-adic 性质
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:T. Asai;N. Chigira;T. Niwasaki;and Y. Takegahara;Tsunenobu Asai;竹ヶ原裕元;Y. Takegahara;Yugen Takegahara;竹ヶ原裕元;竹ヶ原裕元;竹ヶ原裕元;竹ヶ原裕元;Yugen Takegahara;竹ヶ原裕元;竹ヶ原 裕元
- 通讯作者:竹ヶ原 裕元
2-adic properties of the number of solutions of x^m=1 in the alternating group A_n
交替群 A_n 中 x^m=1 的解个数的 2-adic 性质
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:T. Asai;N. Chigira;T. Niwasaki;and Y. Takegahara;Tsunenobu Asai;竹ヶ原裕元;Y. Takegahara;Yugen Takegahara;竹ヶ原裕元
- 通讯作者:竹ヶ原裕元
Generalizations of Burnside ring and their applications
Burnside 环的概括及其应用
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:T. Asai;N. Chigira;T. Niwasaki;and Y. Takegahara;Tsunenobu Asai;竹ヶ原裕元
- 通讯作者:竹ヶ原裕元
Multiple Burnside ring and Brauer induction formulae
多个伯恩赛德环和布劳尔感应公式
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:T. Asai;N. Chigira;T. Niwasaki;and Y. Takegahara;Tsunenobu Asai;竹ヶ原裕元;Y. Takegahara;Yugen Takegahara
- 通讯作者:Yugen Takegahara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEGAHARA Yugen其他文献
TAKEGAHARA Yugen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEGAHARA Yugen', 18)}}的其他基金
Research on properties of generating functions for permutation representations and their applications.
排列表示生成函数的性质及其应用研究。
- 批准号:
17540002 - 财政年份:2005
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on properties of generating functions of the number of special permutation representations and their applications.
特殊排列表示数生成函数的性质及其应用研究。
- 批准号:
15540002 - 财政年份:2003
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on generating functions of the number of group homomorphisms and subgroup lattices of groups
群同态数生成函数及群子群格的研究
- 批准号:
13640004 - 财政年份:2001
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study of group actions on manifolds by psedo-inverse limit systems of equivariant framed maps
等变框架映射伪逆极限系统研究流形上的群作用
- 批准号:
18K03278 - 财政年份:2018
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Free field approach to solvable models associated with elliptic algebra
与椭圆代数相关的可解模型的自由场方法
- 批准号:
26400105 - 财政年份:2014
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theories of the conformal Galilei groups and their mathematical and physical applications
共形伽利略群的表示理论及其数学和物理应用
- 批准号:
26400209 - 财政年份:2014
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characters of groups and algebras as special functions and their applications
作为特殊函数的群和代数的性质及其应用
- 批准号:
24740033 - 财政年份:2012
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Algebraic combinatorics of plane partitions and alternating sign matrices, and related representation theory and mathematical physics
平面分割和交替符号矩阵的代数组合,以及相关的表示理论和数学物理
- 批准号:
24340003 - 财政年份:2012
- 资助金额:
$ 2.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)