Studies on.the structure of.methods, of.sequential estimation
序贯估计方法结构的研究
基本信息
- 批准号:14540107
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head Investigator and each of the investigators obtained the research results concerning the title of this project directly or indirectly. The main results by head investigator are as follows.(1)We consider the point estimation problem of the powers of a standard deviation of a normal distribution with unknown mean and variance when the loss function is squared error plus linear cost. When we estimate them by using the smallest sample size such that the risk is minimized, the asymptotic optimal sample size contains the unknown parameter. Therefore we propose a sequential estimator and obtain the asymptotic expansions of the expected sample size and the risk of the sequential estimator as the cost per unit sample approaches zero.(2)We consider the point estimation problem of the powers of scale parameter of a normal distribution. We want to estimate the powers by using the smallest sample size such that the risk is less than or equal to a preassigned error bound when the risk is mean squared error. In this case the asymptotic optimal sample size contains the unknown parameter. Therefore we define a stopping rule and show that the risk is less than or equal to the error bound. Also, we consider the problem of estimating a scale parameter of an exponential distribution when the loss function is squared error plus linear cost.(3)We consider the bounded risk point estimation problem of the powers of scale parameter of an exponential distribution. We want to estimate the powers by using the smallest sample size such that the risk is less than or equal to a preassigned error bound when the risk is mean squared error. This smallest sample size cannot be used in practice, because it contains the unknown parameter. Therefore we propose a stopping rule and show that the condition of the risk is satisfied for sufficiently small error bound.
课题组长及各研究者直接或间接获得了与本项目名称相关的研究成果。首席研究员的主要结果如下:(1)当损失函数为平方误差加线性成本时,我们考虑均值和方差未知的正态分布的标准差幂的点估计问题。当我们使用最小样本量来估计它们以使风险最小化时,渐近最优样本量包含未知参数。因此,我们提出了一个序贯估计器,并获得了期望样本量的渐近展开以及当单位样本成本接近零时序贯估计器的风险。(2)我们考虑了正态尺度参数幂的点估计问题分配。我们希望通过使用最小样本量来估计功效,以便当风险为均方误差时,风险小于或等于预先分配的误差界限。在这种情况下,渐近最优样本量包含未知参数。因此,我们定义一个停止规则并表明风险小于或等于错误界限。此外,我们还考虑了损失函数为平方误差加上线性成本时指数分布尺度参数的估计问题。(3)考虑了指数分布尺度参数幂的有界风险点估计问题。我们希望通过使用最小样本量来估计功效,以便当风险为均方误差时,风险小于或等于预先分配的误差界限。这个最小的样本量不能在实践中使用,因为它包含未知的参数。因此,我们提出了一个停止规则,并表明对于足够小的误差范围满足风险条件。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chikara Uno: "Sequential point estimation of the powers of a normal scale parameter"Metrika. 55. 215-232 (2002)
Chikara Uno:“正常尺度参数的幂的顺序点估计”Metrika。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Eiichi Isogai: "Sequential estimation of the powers of normal and exponential scale parameters"Sequential Analysis. 22. 129-149 (2003)
Eiichi Isogai:“正态和指数尺度参数的幂的序列估计”序列分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Ali, E.Isogai: "Sequential point estimation of the powers of an exponential scale parameter"Sci.Math.Jpn. 58. 39-53 (2003)
M.Ali,E.Isogai:“指数尺度参数幂的顺序点估计”Sci.Math.Jpn。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tomonari Suzuki: "On Downing-Kirk's theorem"J.Math.Anal.Appl.. 286. 453-458 (2003)
Tomonari Suzuki:“论唐宁-柯克定理”J.Math.Anal.Appl.. 286. 453-458 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Suzuki: "On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces"Proc.Amer Math.Soc.. 131. 2133-2136 (2002)
T.Suzuki:“关于希尔伯特空间中非扩张半群的公共不动点的强收敛性”Proc.Amer Math.Soc.. 131. 2133-2136 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISOGAI Eiichi其他文献
ISOGAI Eiichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISOGAI Eiichi', 18)}}的其他基金
Methodology of sequential procedures and its applications
顺序过程方法及其应用
- 批准号:
23540128 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on statistical sequential estimation problems by the method of sequential analysis
用序贯分析方法研究统计序贯估计问题
- 批准号:
18540117 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the optimality of methods of statistical sequential decisions
统计序贯决策方法的最优性研究
- 批准号:
11640106 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A sequential analytic approach to the methods of optiaml statistical decisions
最优统计决策方法的序贯分析方法
- 批准号:
09640251 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Studies on statistical sequential estimation problems by the method of sequential analysis
用序贯分析方法研究统计序贯估计问题
- 批准号:
18540117 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)