Elucidation of the boundary of various Siegel disks influenced by continued fraction expansions

阐明受连分式展开影响的各种西格尔圆盘的边界

基本信息

  • 批准号:
    21740121
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2009
  • 资助国家:
    日本
  • 起止时间:
    2009 至 2011
  • 项目状态:
    已结题

项目摘要

2009y : We obtained that for some transcendental entire functions,"the boundary of Siegel disks whose rotation number was of bounded type was a quasicircle". We obtained that the logarithmic lift of these transcendental entire functions had a wandering domain whose boundary was a quasicircle as a corollary.2010y : We constructed some transcendental entire functions satisfying that "the boundary of Siegel disks whose rotation number was of bounded type was a quasicircle". We introduced a topology on the set of all entire functions respecting dynamics and we studied variation of Siegel disks for small perturbation with respect to the topology.2011y : We comprehended the relationship between the qualitative theory of differential equations and complex dynamics, and we studied that(super) attracting periodic points, parabolic periodic points, Siegel points and Cremer points for complex dynamics and equilibrium points for differential equations.
2009年:我们获得了一些先验整个功能,“旋转数为有界类型的Siegel磁盘的边界为Quasicircle”。我们获得了这些先验的整个功能的对数提升具有一个流浪的域,其边界是推论的Quasicircle.2010y:我们构建了一些超越整个功能,满足了“ Siegel磁盘的边界,其旋转数为Quasicircle, ”。我们引入了有关尊重动态的所有功能的集合的拓扑,我们研究了Siegel磁盘的变化,以实现小扰动。 (超级)吸引周期点,抛物线周期点,siegel点和针对差分方程的复杂动力学和平衡点的火化点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATAGATA Koh其他文献

KATAGATA Koh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

New developments of hypergeometric functions and hypergeometric groups
超几何函数和超几何群的新进展
  • 批准号:
    22K03365
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic and global analysis of hypergeometric functions
超几何函数的渐近和全局分析
  • 批准号:
    19K03575
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on Fatou components of transcendental entire functions and singular values
超越整函数法图分量与奇异值的研究
  • 批准号:
    23540213
  • 财政年份:
    2011
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on complex dynamics of transcendental entire functions
超越整体函数的复杂动力学研究
  • 批准号:
    19540190
  • 财政年份:
    2007
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了