Construction of Plat-form Models for the Problemof Packing Geometrical Objects

几何对象填充问题的平台模型构建

基本信息

  • 批准号:
    20500012
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2008
  • 资助国家:
    日本
  • 起止时间:
    2008 至 2010
  • 项目状态:
    已结题

项目摘要

In this study, we proposed "Multi-sphere Scheme" to efficiently pack given two- or three-dimensional objects in a compact space, designed all the components of the scheme, and investigated fundamental theory on geometrical packings and graph drawings. We designed an algorithm that can directly transform given triangle-mesh data into data for Multi-sphere Scheme based on a graph-theoretical analysis. We developed a 3D visual interface for Multi-sphere Scheme, by which we can easily check computational results in a visualized form. We greatly improved our solver for packing rectangles so that a long-standing open benchmark instance is solved for the first time by our new solver. As for the theory part, we found a 2D representation of triconnected graphs so that a useful triconnected decomposition can be easily obtained, and a characterization of the graphs of non-convex polytopes in a certain class.In particular, the latter result is the first such result since Steinitz' theorem, a characterization of the graphs of convex polytopes is found 80 years ago.
在这项研究中,我们提出了“多球方案”,以在紧凑空间中有两个或三维对象有效包装,设计了该方案的所有组成部分,并研究了几何包装和图形图的基本理论。我们设计了一种算法,可以基于图理论分析将给定的三角形数据直接转换为多球方案的数据。我们为多球方案开发了一个3D视觉界面,通过该方案,我们可以轻松地以可视化的形式检查计算结果。我们大大改善了求解器的矩形求解器,因此我们的新求解器首次解决了长期的开放基准实例。至于理论部分,我们发现了三连电图的2D表示,因此可以轻松地获得有用的三连电分解,并且在某个类别中的非convex多型的图表的表征尤其是后者的结果是自Steinitz'seorem以来的第一个这样的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualization can improve multiple decision table classifiers
可视化可以改进多个决策表分类器
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    上田祐華;他;K.Haraguchi
  • 通讯作者:
    K.Haraguchi
Efficient branch-and-bound algorithms for one-dimensional contiguous bin packing problem and two-dimensional strip packing problem
一维连续装箱问题和二维带状装箱问题的高效分支定界算法
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Imamichi;Y.Arahori;H.Nagamochi
  • 通讯作者:
    H.Nagamochi
Minimum Degree Orderings
  • DOI:
    10.1007/s00453-008-9239-2
  • 发表时间:
    2007-12
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    H. Nagamochi
  • 通讯作者:
    H. Nagamochi
Optimization problems and algorithms in double-layered food packing systems, Journal of Advanced Mechanical Design
双层食品包装系统的优化问题和算法,《先进机械设计杂志》
Exact algorithms for the 2-dimensional strip packing problem with and without rotations
带旋转和不带旋转的二维条带堆积问题的精确算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAMOCHI Hiroshi其他文献

機械学習QSARの整数計画法に基づく逆解析法
基于整数规划的机器学习QSAR逆分析方法
  • DOI:
    10.2477/jccj.2021-0030
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NAGAMOCHI Hiroshi;ZHU Jianshen;AZAM Naveed Ahmed;HARAGUCHI Kazuya;ZHAO Liang;AKUTSU Tatsuya
  • 通讯作者:
    AKUTSU Tatsuya

NAGAMOCHI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAMOCHI Hiroshi', 18)}}的其他基金

Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Algorithms for Discrete Optimization Based on Graph-Theoretical Methods
基于图论方法的离散优化算法设计
  • 批准号:
    17K00014
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm design techniques based on transformation into network structure
基于网络结构转化的算法设计技术
  • 批准号:
    23500015
  • 财政年份:
    2011
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of properties on the connectivity of graphs and networks and its applications to design of algorithms
图和网络的连通性分析及其在算法设计中的应用
  • 批准号:
    17500008
  • 财政年份:
    2005
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Approximation Algorithms for the Problems with Grapth Structure
图结构问题的逼近算法设计
  • 批准号:
    16092212
  • 财政年份:
    2004
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Construction of Approximation Algorithms Based on Graph Theory and Its Application to Network Problems
基于图论的逼近算法构建及其在网络问题中的应用
  • 批准号:
    14580372
  • 财政年份:
    2002
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of algorithms for solving graph/network problems
开发解决图/网络问题的算法
  • 批准号:
    10205213
  • 财政年份:
    1998
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)

相似海外基金

Zero distribution of Dirichlet L-functions
狄利克雷 L 函数的零分布
  • 批准号:
    21K03204
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Developments in Arborescence Packing Problems
树状堆积问题的新进展
  • 批准号:
    22700016
  • 财政年份:
    2010
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of hybrid metaheuristics as fundamental algorithms in information science
混合元启发法作为信息科学基本算法的研究
  • 批准号:
    20300004
  • 财政年份:
    2008
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hybrid Approaches to Computationally Hard Problems : Approximation, Randomization, and Parallelization
计算难题的混合方法:近似、随机化和并行化
  • 批准号:
    20500021
  • 财政年份:
    2008
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
メタ戦略に基づく3次元物体の最適配置を求めるフレームワークの構築
构建一个框架以基于元策略找到 3D 对象的最佳放置
  • 批准号:
    07J01821
  • 财政年份:
    2007
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了