有限代数群の表現論

有限代数群的表示论

基本信息

  • 批准号:
    08640064
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

例外群のUnipotent characterの値の決定については、研究が続行中である。これに関しては、新たな公式が得られた。又、今年度は、特により一般に群Gの中心が連結でない場合のLusztig予規への取り組みを始めた。特に、その最も典型的な例である。特殊線型群SLn(FFq)のShintani descentを決定することが出来た。その道具となったのは、川中により発層させられた。一般Gelfand-Graev表現の理論である。今年度の研究で、一般の連結なreductive群の一般Gelfand-Graev表現のShintani descentを(全く一般ではないが)多くの重要な場合に決定することが出来た。これを利用して、特にSLn(FFq)の場合に、この群の既約指標のパラメタリゼーションが得られる。このことからSLn(FFq)の既約指標のShintani descentが決定される。今後の目標は、この結果を、全てのreductive群に適用できる様(特にSUn(FFq)に)拡張することにある。以上の研究とは、別に、今年度の研究で複素鏡映群G(e,1,n)のCoinvariant algebraの自然な基底の構成について、いわゆるDemazure型の定理が成立することが分かった。これは、ある種のWeyl群に関する結果の拡張と考えることが出来る。Weyl群の場合と同様に、G(e,1,n)の元のreduced expressionに対応して基底が作られることが分かった。これを利用して、将来、有用な結果が得られると思われる。
正在进行研究以确定异常的单能特征的价值。对此,得到了一个新的公式。另外,今年我们已经开始研究 Lusztig 初步规则,特别是在 G 组中心未连接的情况下。尤其是最典型的例子。我们能够确定特殊线性群 SLn(FFq) 的 Shintani 下降。成为工具的物质被河流排出。这是一般 Gelfand-Graev 表示的理论。在今年的研究中,我们能够在许多重要(尽管不完全一般)的情况下确定一般连通还原群的一般 Gelfand-Graev 表示的 Shintani 血统。使用它,我们可以获得该组的不可约指标的参数化,特别是在 SLn(FFq) 的情况下。由此,确定SLn(FFq)的不可约指数的Shintani下降。我们未来的目标是扩展这个结果,以便它可以应用于所有还原群(特别是 SUn(FFq))。除了上述研究之外,今年的研究还揭示了复反射群 G(e,1,n) 的 Coinvariant 代数的自然基构造,所谓的 Demazure 型定理成立。这可以被认为是某些外尔组结果的延伸。与 Weyl 群一样,我们发现对应于 G(e,1,n) 的原始简化表达式创建了一个基础。看来这将在未来产生有用的结果。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

庄司 俊明其他文献

有限群の表現(数学セミナー)
有限群的表示(数学研讨会)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    庄司 俊明
  • 通讯作者:
    庄司 俊明
表現論の光芒-Hecke環をめぐる7つの物語-数理科学
表示论的光芒 - 围绕赫克环的 7 个故事 - 数学科学
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    庄司 俊明
  • 通讯作者:
    庄司 俊明
Symmetric space associated to finite special linear groups 上智大学数学講究録No.46
与有限特殊线性群相关的对称空间 上智大学数学 普通学 No.46
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    庄司 俊明
  • 通讯作者:
    庄司 俊明
有限群の表現(数学セミナー)
有限群的表示(数学研讨会)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    庄司 俊明
  • 通讯作者:
    庄司 俊明
有限群の表現(数学セミナー)
有限群的表示(数学研讨会)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    庄司 俊明
  • 通讯作者:
    庄司 俊明

庄司 俊明的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('庄司 俊明', 18)}}的其他基金

指標層の理論とその拡張
指数层理论及其扩展
  • 批准号:
    25400012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
有限体上の対称空間と新谷descent
有限域上的对称空间和 Shintani 下降
  • 批准号:
    20654002
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Braner代数とBirman-Murakami-Wenzl代数のモジュラー表現論
Braner代数和Birman-Murakami-Wenzl代数的模表示论
  • 批准号:
    03F02729
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Brauer代数とBirman-Murakami-Wentzl代数のモジュラー表現論
Brauer 代数和 Birman-Murakami-Wentzl 代数的模表示论
  • 批准号:
    02F00729
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
不連結簡約群に対するSpringer対応と指標層
Springer 对未连接的缩减组和指示层的支持
  • 批准号:
    02F00792
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
半単純代数群の半単純元から得られるポアンカレ単項式と表現
庞加莱单项式和从半单代数群的半单元素获得的表达式
  • 批准号:
    01F00718
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
複素鏡映群の研究
复杂反射群的研究
  • 批准号:
    99F00013
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数群の表現論についての研究
代数群表示论研究
  • 批准号:
    02640079
  • 财政年份:
    1990
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

「自立活動」における即興表現を中心とした音楽療法的活動のための理論構築
以“独立活动”即兴表达为中心的音乐治疗活动理论构建
  • 批准号:
    24K05999
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
対称関数の代数的組合せ論とその表現論,組合せ論,可積分系への応用
对称函数的代数组合及其在表示论、组合学和可积系统中的应用
  • 批准号:
    24K06646
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非可換調和解析におけるハーディ空間と新たな潮流-実解析・表現論・確率論の融合
Hardy空间和非交换调和分析的新趋势——实分析、表示论和概率论的融合
  • 批准号:
    24K06764
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
極小表現と一般化熱理論の研究
最小表示与广义热理论研究
  • 批准号:
    24KJ0937
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
加群圏の部分圏の解析と箙表現への応用
模块类别的子类别分析及其在箭袋表示中的应用
  • 批准号:
    22KJ2605
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了