New developments and interaction between Algebraic Geometry and Integrable Systems

代数几何与可积系统的新发展及其相互作用

基本信息

项目摘要

We gave an algebro-geometric construction of the moduli spaces of stable parabolic connections over curves with unramified singularities, and showed the fundamental property of the Riemann-Hilbert correspondences. These results showed the geometric Painleve property of the nonlinear isomonodromic differential equations and established the geometry of isomonodromic deformations of connections, which enables us to investigate the phase space of differential equations deeply such as Okamoto's space of initial conditions for classical Painleve equations. Together with the progress in the field of higher dimensional birational geometry and the geometry related to mirror symmetry, these results reveal deep relations between algebraic geometry and integrable systems.
我们给出了稳定抛物线连接的模量空间的代数几何结构,并在曲线上具有未受到奇异性的曲线,并显示了Riemann-Hilbert对应关系的基本特性。这些结果表明,非线性异构粒度微分方程的几何pachleve特性,并确定了连接的等异构粒细胞变形的几何形状,这使我们能够深入研究微分方程的相位空间,例如Okamoto的初始条件空间的初始条件空间,用于经典的painleve方程。加上较高维度的生育几何形状和与镜像对称性相关的几何形状领域的进展,这些结果揭示了代数几何与整合系统之间的深层关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poisson deformations of affine symplectic varieties
仿射辛簇的泊松变形
  • DOI:
    10.1215/00127094-2010-066
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Namikawa;Y
  • 通讯作者:
    Y
Bridgeland stability conditions and Fourier-Mukai transforms
Bridgeland 稳定性条件和 Fourier-Mukai 变换
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masahiko Miyamoto;Koichiro Harada;吉岡康太
  • 通讯作者:
    吉岡康太
Note on the Stokes structure of Fourier transform
关于傅里叶变换斯托克斯结构的注解
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松浦梨恵;鶴切真友美;花神彩香;インベイウェン;岸本利彦;四方哲也;望月拓郎
  • 通讯作者:
    望月拓郎
Asymptotic behavior of the hyperbolic Schwarz map at irregular singular points
不规则奇点处双曲 Schwarz 映射的渐近行为
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Koike;T. Sasaki;Masaaki Yoshida
  • 通讯作者:
    Masaaki Yoshida
Ruan's conjecture and integral structures in quantum cohomology
  • DOI:
    10.2969/aspm/05910111
  • 发表时间:
    2008-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Iritani
  • 通讯作者:
    H. Iritani
共 82 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 17
前往

SAITO Masa-hiko的其他基金

Research of new developments in moduli spaces and integrable systems
模空间与可积系统研究新进展
  • 批准号:
    16340009
    16340009
  • 财政年份:
    2004
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Geometry on String Theory and Moduli spaces
弦论和模空间的几何
  • 批准号:
    12440008
    12440008
  • 财政年份:
    2000
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Research on Periods of Algebraic Varieties and Hypergeometric Functions
代数簇和超几何函数的周期研究
  • 批准号:
    09440015
    09440015
  • 财政年份:
    1997
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Developments in Interactions between Algebraic Geometry and Integrable Systems
代数几何与可积系统相互作用的进展
  • 批准号:
    24224001
    24224001
  • 财政年份:
    2012
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
    Grant-in-Aid for Scientific Research (S)
Toplogical Field theory, Moduli spaces of connections and Geometric Langlands correspondence
拓扑场论、连接模空间和几何朗兰兹对应
  • 批准号:
    23654010
    23654010
  • 财政年份:
    2011
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
    Grant-in-Aid for Challenging Exploratory Research
Studies on Painleve or Garnier systems by means of their phase spaces
通过相空间研究 Painleve 或 Garnier 系统
  • 批准号:
    21540224
    21540224
  • 财政年份:
    2009
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Study on integrable systems around the Painleve systems
围绕 Painleve 系统的可积系统研究
  • 批准号:
    20740089
    20740089
  • 财政年份:
    2008
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
    Grant-in-Aid for Young Scientists (B)
Studies on modular and quasimodular forms arising in various contexts in mathematics and physics
对数学和物理中各种背景下出现的模和拟模形式的研究
  • 批准号:
    19340009
    19340009
  • 财政年份:
    2007
  • 资助金额:
    $ 63.48万
    $ 63.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)