Infinite Dimensional Analysis and Quantum Probability Theory

无限维分析和量子概率论

基本信息

  • 批准号:
    09640178
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

(1) Stochastic Limit of Quantum Theory Through the stochastic limit quantum noises and quantum stochastic differential equations are derived from canonical Hamiltonian models. This *ethod is applied to a model involving strong nonlinear interaction to obtain a new type of quantum noise. For example, a standard model of QED without dipole approximation yields a singular type of noncrossing diagrams and nonlinear deformation of Wigner's semicircle law. The concept of an interacting Fock module is introduced in order to unify this kind of phenomena.(2) Nonlinear Extension of Classical and Quantum Stochastic Calculus Motivated by (1) , we studied higher powers of quantum white noises which are considered as the first class of an infinite hierarchy of noises. Tha associated Ito formula is proved with renormalization. Moreover, unique existence of solutions is proved for a class of normal-ordered white noise equations involving higher powers of quantum white noises and a relation to quantum stochastic differential equations is established.(3) Central Limit Theorems Within the framework of algebraic probability theory, the existing concepts of independence have been unified and the new notion of singleton independence is introduced. The associated central limit theorem is proved and the limit stochastic process is obtained. This result is related to orthogonal polynomials, their q-deformations, and Gaussianization * probability measures.(4) Quantum Markov Chains Classification of quantum Markov states and lifting problems in quantum communication channels are discussed. An interesting connection between basic algorithyms appearing in quantum computing and quantum Markov chains is investigated.(5) Others Some conrete nonlinear models are discussed in detail in connection with quantum entropy and quantum communication. Questions in foundation of quantum theory related to Bell inequality and EPR paradox are clarified from the standpoint of algebraic probability theory.
(1)量子理论的随机极限 通过随机极限,从正则哈密顿模型导出量子噪声和量子随机微分方程。该方法应用于涉及强非线性相互作用的模型,以获得一种新型的量子噪声。例如,没有偶极近似的 QED 标准模型会产生奇异类型的非交叉图和维格纳半圆定律的非线性变形。为了统一这种现象,引入了相互作用的Fock模块的概念。(2)经典和量子随机微积分的非线性推广受(1)的启发,我们研究了被认为是第一类的更高功率的量子白噪声。无限层次的噪音。通过重正化证明了Tha相关的Ito公式。此外,证明了一类涉及高次量子白噪声的正序白噪声方程解的唯一存在性,并建立了与量子随机微分方程的关系。 (3)中心极限定理 在代数概率论的框架内,统一了现有的独立概念,并引入了新的单例独立概念。证明了相关的中心极限定理,得到了极限随机过程。这个结果与正交多项式、它们的q变形和高斯化*概率测度有关。(4)量子马尔可夫链讨论了量子马尔可夫态的分类和量子通信信道中的提升问题。研究了量子计算中出现的基本算法和量子马尔可夫链之间的有趣联系。(5)其他结合量子熵和量子通信详细讨论了一些具体的非线性模型。从代数概率论的角度澄清了有关贝尔不等式和EPR悖论的量子理论基础问题。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
大矢雅則: "Complexity,fractal dimension for quantum states" Open Systems and Information Dynamics. 4. 141-157 (1997)
Masanori Oya:“量子态的复杂性、分形维数”开放系统和信息动力学。4. 141-157 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Accardi (ed.): "Probability Towards 2000." Lect.notes in Stat Springer-Verlag. Vol.128. (1998)
L.Accardi(主编):“迈向 2000 年的概率”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Accardi Luigi: "Dynamics of dissipative two-state systems in the stochastic applications" Phys. Rev. A. 56. 1-7 (1997)
Accardi Luigi:“随机应用中耗散二态系统的动力学”Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
大矢雅則: "Information Dynamics and Open Systems" Kluwer Academic Publisher, The Netherlands, (1997)
Masanori Oya:“信息动态和开放系统”Kluwer 学术出版社,荷兰,(1997 年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L.Accardi: "An open system approach to quantum computers" Quantum Communication and Mesurements (Hirota ed.). 387-393 (1997)
L.Accardi:“量子计算机的开放系统方法”量子通信和测量(广田编辑)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ACCARDI Luigi其他文献

ACCARDI Luigi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ACCARDI Luigi', 18)}}的其他基金

無限次元解析と量子確率
无限维分析和量子概率
  • 批准号:
    09894002
  • 财政年份:
    1997
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

随机乘积和带状矩阵最大特征值的极限分布
  • 批准号:
    12371157
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
相依随机变量的自正则化极限理论及其应用
  • 批准号:
    12371155
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
α-稳定过程驱动的随机微分方程的极限行为研究
  • 批准号:
    12301175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相依随机变量的概率极限理论及其应用
  • 批准号:
    12301183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带有奇异噪声的随机偏微分方程:适定性和大N极限
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
Large N limit of the stochastic Yang-Mills model
随机 Yang-Mills 模型的大 N 极限
  • 批准号:
    2771450
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Studentship
A study of stochastic gradient descent algorithms in the high-dimensional limit using random matrix theory
利用随机矩阵理论研究高维极限下的随机梯度下降算法
  • 批准号:
    569306-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
  • 批准号:
    2206038
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
  • 批准号:
    2206038
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了