Research on partial differential equations and selfadjoint operators of mathematical physics
数学物理偏微分方程与自伴算子研究
基本信息
- 批准号:09640158
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
joint operators appearing in mathemmatical physics was carried out. Major attention was focused on the topics of linear and non-linears Schrodinger equations, non-linear wave equations and the spectral and scattering theory for Schrodinger operators and Pauli-operators. These problems were investigated by employing methods mainly from functional analysis, real-variable theory, Fourier analysis and micro-local analysis. As a result, the following new results were found :1. The fundamental solution of time dependent Schrodinger equations is smooth and bounded for t * 0 if the potential subquadratic, whereas it is nowhere C^1 if the potential superquadratically increasing at infinity. The fundamental solution of pertubations of harmonic oscillator enjoy the recurrence of singularities if the perturbation are sublinear whereas it in general disappears if the perturbations are superlinear.2. The fundamental solution remains continuous and bouned for a class of singular potentials including Coulomb potentials.3. The asymptotic behavior of the number of eiegnvalues accumulating to zero of two dimensional Pauli operators with non-homogeneous magnetic fields has been established.4. The low enegry limits of the scattering opertors for two dimensional Schrodinger opeartors with magnetic fields has been found. The asymptotic behavior of the scattering matrix when the magnetic field converges to so called magnetic string has been clarified.5. The effect of the magnetic fields to the tunneling in semi-classical limit has been measured and it is found that it largely depends on the smoothness of the magnetic fields.6. Semi-classical behavior of the spectral shift function for Schrodinger operators at the trapping energy has been clarified.7. Strichartz type estimate is established for a system of non-linear wave equation with different propagation speeds and its relation to the well-posedness of critical non-linear wave equation has been clarified.
进行了数学物理中出现的联合算子。主要注意力集中在线性和非线性薛定谔方程、非线性波动方程以及薛定谔算子和泡利算子的光谱和散射理论等主题上。主要采用泛函分析、实变量理论、傅立叶分析和微观局部分析等方法对这些问题进行研究。结果发现以下新结果: 1.如果势为二次方,则时间相关薛定谔方程的基本解是平滑的且有界于 t * 0,而如果势以超二次方无限增加,则它在任何地方都不是 C^1。简谐振子扰动的基本解如果是次线性扰动则奇点重现,而如果扰动是超线性奇点则一般消失。 2.对于包括库仑势在内的一类奇异势,基本解保持连续且有界。 3.建立了非均匀磁场二维泡利算子特征值个数累加为零的渐近行为。 4.已经发现了具有磁场的二维薛定谔算子的散射算子的低能量极限。阐明了当磁场收敛到所谓的磁弦时散射矩阵的渐近行为。5.测量了半经典极限下磁场对隧道效应的影响,发现其很大程度上取决于磁场的平滑度。 6.薛定谔算子在俘获能下谱移函数的半经典行为已得到阐明。7.针对不同传播速度的非线性波动方程组建立了Strichartz型估计,并阐明了其与临界非线性波动方程适定性的关系。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tohru Ozawa: "Space-time estimates for null-gauge forms and non-linear schrodinger equations" Differential and Integral Equations. 11. 279-292 (1998)
Tohru Ozawa:“零规范形式和非线性薛定谔方程的时空估计”微分方程和积分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hideo Tamura: "Error estimate in operator norm of exponential product formula for propagators of parabolic equations" Osaka Mathematical Journal. 35. 751-770 (1998)
Hideo Tamura:“抛物型方程传播子的指数乘积公式的算子范数的误差估计”大阪数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenji Yajima: "On the fundamental solution of a pertcerbed harmonic oscillators" Topological methods in Nonb wear Analysis. 9. 77-106 (1977)
Kenji Yajima:“关于受扰谐振子的基本解决方案”Nonb 磨损分析中的拓扑方法。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenji Yajima: "Boundedness and continuity of the fundamental solution of the time dependent Schrodinger equation with singular potentials" Tohoku Mathematical Joural. 50. 577-595 (1998)
Kenji Yajima:“具有奇异势的时间相关薛定谔方程的基本解的有界性和连续性”东北数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakamura, Shu: "Tunneling estimates for magnetic Schrodinger operators" Commun.Math.Phys.200. 25-34 (1999)
Nakamura, Shu:“磁薛定谔算子的隧道估计”Commun.Math.Phys.200。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAJIMA Kenji其他文献
The 𝐿𝑝-boundedness of wave operators for two dimensional Schrödinger operators with threshold singularities
具有阈值奇点的二维薛定谔算子的波算子的 ?<sup>?</sup>-有界性
- DOI:
10.2969/jmsj/85418541 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
YAJIMA Kenji - 通讯作者:
YAJIMA Kenji
The 𝐿𝑝-boundedness of wave operators for two dimensional Schrödinger operators with threshold singularities
具有阈值奇点的二维薛定谔算子的波算子的 ?<sup>?</sup>-有界性
- DOI:
10.2969/jmsj/85418541 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
YAJIMA Kenji - 通讯作者:
YAJIMA Kenji
EXAMINATION OF OBSTACLES AND COUNTERMEASURES WHEN UTILIZING NEW MAINTENANCE TECHNOLOGIES FOR CIVIL INFRASTRUCTURES
民用基础设施使用新维护技术时的障碍及对策研究
- DOI:
10.2208/jscejcm.73.i_100 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
HASUIKE Rina;KINOSHITA Koji;YAJIMA Kenji;TAKAGI Akiyoshi;ROKUGO Keitetsu - 通讯作者:
ROKUGO Keitetsu
YAJIMA Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAJIMA Kenji', 18)}}的其他基金
Mathematical Analysis of Quantum Physics
量子物理的数学分析
- 批准号:
22340029 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of Quantum Physics
量子物理的数学分析
- 批准号:
18340041 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis of Quantum Physics
量子物理的数学分析
- 批准号:
14340039 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comprehensive study of differential equations
微分方程综合研究
- 批准号:
11304006 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
一维几乎周期测度薛定谔算子的谱理论
- 批准号:12271509
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
斐波那契薛定谔算子和CMV矩阵的谱理论
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
准周期薛定谔算子谱理论的动力系统方法
- 批准号:11871286
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
拟周期薛定谔算子谱理论的动力系统方法
- 批准号:11771205
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
拟周期薛定谔算子谱的拓扑结构
- 批准号:11701285
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spectral and scattering theory for discrete Schrodinger operators
离散薛定谔算子的谱与散射理论
- 批准号:
20J00247 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spectral Theory and Dynamics of Ergodic Schrodinger Operators
遍历薛定谔算子的谱理论和动力学
- 批准号:
1764154 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
- 批准号:
92997-2010 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory and resonance for Schrodinger operators
薛定谔算子的谱理论和共振
- 批准号:
92997-2010 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Spectral theory of ergodic Schrodinger operators and related models
遍历薛定谔算子的谱论及相关模型
- 批准号:
1401204 - 财政年份:2014
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant