Representation Theoretic and/or Geometric Research for Theta Series

Theta 级数的表示理论和/或几何研究

基本信息

  • 批准号:
    09640005
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

(1) The classical correspondence between Jacobi forms and Sigel cusp forms of half-integral weights is studied from representation theoretic point of view. The basic tool is Well representation. The results are published on "On Siegel modular forms of half-integral weights and Jacobi forms" (Trans. A.M.S.351 (1999), pp.735-780).(2) Hermite polynomials of multi-variables are defined in two ways through a detailed study of the irreducible decomposition of the Weil representation of Sp(n, *) restricted to the dual pair (U(n), U(1)). As K-type vectors for K = U(n), we will get products of the classical (one-variable) Hermite polynomials which give a complete system of the solutions of the Schrodinger equation of n-dimennsional harmonic ascillator. On the other hand, as K-type vectors for K = U(1), we will get another complete system of the solution of the Schrodinger equation which is not of separated variables, The results will be published on the paper "K-type vectors of Weil representat … More ion and generalized Hermite polynomials".(3)Weil's generalized Poisson summation formula, which is valid only for theta group, is extended to the general paramodular groups. As applications ; 1) a representation theoretic proof of the transformation formula of Riemann's theta series, and 2) the transformation formula of theta series associated with a integral quadratic form with harmonic polynomials. The results will be published on the paper "On an extension of generalized Poisson summation formuls of Weil and its applications".(4) We applied the method of T.Shintani (J.Fac. Sci. Univ. Tokyo 22 (1975), pp. 25-56) to the general semi-simple algebraic group over *, and found that a part of the dimmension formula of the space of the automorphic forms attached to an integrable representaton is given by a special values of the zeta functions of pre-homogeneous vector space of parabolic type srising from a maximal parabolic subgroup defined over *. Also we found that there seems to exist an interesting relationship between the non-zero set of the Fourier tranform of the spherical trace function of the integrable representaiton and the Zariski open orbit of the pre-homogeneous vector space. A part of the results will be published on the proceeding of the Autumn Workshop on Number Theory at Haluba (1998). Less
(1)从表示论的角度研究了半积分权重的雅可比形式和西格尔尖点形式之间的经典对应关系,其结果发表在《论半积分权重的西格尔模形式》上。 Jacobi 形式”(Trans. A.M.S.351 (1999), pp.735-780)。(2) 多变量的 Hermite 多项式有两种定义方式通过详细研究限制于对偶对 (U(n), U(1)) 的 Sp(n, *) Weil 表示的不可约分解,我们将其作为 K = U(n) 的 K 型向量。将得到经典(单变量)埃尔米特多项式的乘积,该多项式给出 n 维谐振子薛定谔方程的完整解系。 另一方面,作为 K = 的 K 型向量。 U(1),我们将得到另一个完整的非分离变量薛定谔方程解的系统,其结果将发表在论文《K-type vector of Weilrepresentat … More ion andgeneralized Hermite polynomials》上。 (3)将仅对theta群有效的Weil广义泊松求和公式推广到一般副模群作为应用; 1) 的变换公式的表示论证明。黎曼的theta级数,以及2)与调和多项式的积分二次形式相关的theta级数的变换公式,其结果将发表在论文“On an Extension of Generalized Poisson summation Formulas of Weil and its applications”上。(4)我们将 T.Shintani (J.Fac. Sci. Univ. Tokyo 22 (1975), pp. 25-56) 的方法应用于一般* 上的半单代数群,并发现附加于可积表示的自守形式空间的维数公式的一部分由抛物型预齐次向量空间的zeta函数的特殊值给出由定义在 * 上的最大抛物线子群产生,我们还发现,球迹函数的傅立叶变换的非零集之间似乎存在有趣的关系。可积表示和预齐次向量空间的 Zariski 开轨道 部分结果将发表在 Haluba Less 秋季数论研讨会上(1998 年)。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koichi Takase: "On Siegel Modular Forms of Half-Integral Weights and Jacobi-Forms" The Transactions of A.M.S.351. 735-780 (1999)
Koichi Takase:“论半积分权重和雅可比形式的西格尔模形式”A.M.S.351 的交易。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masaki and Takemoto: "The numerical radius of infinite directed regular graph" Math.Japonica. 45. 337-343 (1997)
Masaki 和 Takemoto:“无限有向正则图的数值半径”Math.Japonica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Koichi Takase: "On Theta Series wich Havmonic Polynomtals or Hermite Polynomla" Cmmentary Math. Univ. St. Pauli. 46. 57-91 (1997)
Koichi Takase:“论 Havmonic 多项式或 Hermite 多项式的 Theta 系列”注释数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高瀬幸一: "T., Ibubiyama, M, Saito 「On Zeta Functions Associated to Sym. Mat.」の紹介" 整数論オータムワークショップ報告集. to appear.
Koichi Takase:“T.、Ibubiyama、M、Saito 介绍‘与 Sym. Mat 相关的 Zeta 函数’”数论秋季研讨会报告集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takemoto, H.: "A characterization of the power partially isometric operators" Bull.Miyagi Univ.Edu.(to appear).
Takemoto, H.:“幂部分等距算子的表征”Bull.Miyagi Univ.Edu.(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKASE Koichi其他文献

TAKASE Koichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKASE Koichi', 18)}}的其他基金

Study on the spherical function of discrete series representations from the point of view of the theory of automorphic forms
从自守型理论角度研究离散级数表示的球函数
  • 批准号:
    20540005
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Motives of Donor Countries on their Official Development Assistances
捐助国官方发展援助的动机
  • 批准号:
    20530253
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on discrete series representations and the theory of automorphic forms
离散级数表示和自守形式理论的研究
  • 批准号:
    17540005
  • 财政年份:
    2005
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the dimension formula of automorphic forms associated with an integrable representation
与可积表示相关的自守形式的维数公式研究
  • 批准号:
    14540003
  • 财政年份:
    2002
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic studies on Abelian surfaces
阿贝尔曲面的算术研究
  • 批准号:
    11640006
  • 财政年份:
    1999
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Jacobi形式的Kohnen plus空间及其应用
  • 批准号:
    11901411
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
迹公式在自守形式中的应用
  • 批准号:
    11801327
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
自守形式解析理论中的若干问题
  • 批准号:
    11771252
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
稳定局部迹公式
  • 批准号:
    11601503
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
自守形式的算术与几何
  • 批准号:
    11031004
  • 批准年份:
    2010
  • 资助金额:
    140.0 万元
  • 项目类别:
    重点项目

相似海外基金

Representation theoretic research on periods of automorphic forms
自同构周期的表示论研究
  • 批准号:
    22K03228
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Newform theory for the full space via local Shimura correspondence and Waldspurger-type theorem
通过局部 Shimura 对应和 Waldspurger 型定理的完整空间的新形式理论
  • 批准号:
    18K13396
  • 财政年份:
    2018
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Representation Theory, Automorphic Forms, and Complex Geometry
表示论、自守形式和复几何
  • 批准号:
    1302848
  • 财政年份:
    2013
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Standard Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
  • 批准号:
    1258675
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
  • 批准号:
    0844185
  • 财政年份:
    2009
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了