The Study of theoretical aspects and practical aspect on Grobner Bases
Grobner基底的理论与实践研究
基本信息
- 批准号:18340008
- 负责人:
- 金额:$ 10.14万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2009
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With taking the persistence and the internationalization into consideration, in collaboration with many researchers in various field including computational commutative algebra, computational algebraic analysis, computational algebraic statistics as well as algebraic algorithm, this research project strongly developed the study on the theoretical effectivity and practical effectivity of Grobner bases and succeeded in establishing the foundations of the modern theory of Grobner bases. At present, in order for our research group to be one of the strongest international footholds on the theoretical and practical research of Grobner bases, the CREST research project "Harmony of Grobner bases and the modern industry society," whose team leader is Takayuki Hibi, which is supported by JST (Japan Science and Technology Agency) follows this research project.
考虑到持久性和国际化的考虑,与许多领域的许多研究人员合作,包括计算交换代数,计算代数分析,计算代数统计以及代数算法,这项研究项目强烈发展了对Grobner Bases和Grobner Bases base base nosed in nosed nosed in nosed nosed noperty in nosed nosed noperty in nosed nosed nosed nosed nosed nopertion in nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosed nosity in nosed nosed nosed nosity的研究的研究。目前,为了使我们的研究小组成为Grobner Bases的理论和实践研究的最强国际立足之一,Crest Research项目“ Grobner Bases和Modern Industry Society的Harmony of Grobner Base and Modern Industry Society”,其团队领导者是Takayuki Hibi,由JST(日本科学技术机构)支持该研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vertex cover algebras of unimodlar hypergraphs
单模超图的顶点覆盖代数
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:J.Herzong;日本孝之; N.V.Trung
- 通讯作者:N.V.Trung
rings arising from meet-distributive meet-semilattices
由相遇分布相遇半格产生的环
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J. Herzog;T. Hibi
- 通讯作者:T. Hibi
Maximal Betti numbers of Cohen-Macaulay complexes with a given $f$-vector
具有给定 $f$-向量的 Cohen-Macaulay 复合体的最大 Betti 数
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:S. Murai;T. Hibi
- 通讯作者:T. Hibi
Gin and lex of certain monomial ideals
某些单项式理想的 Gin 和 lex
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Masaaki Katsuno;Denis Gleeson;Juergen Herzog;Juergen Herzog;Juergen Herzog;Satoshi Murai
- 通讯作者:Satoshi Murai
Grobner bases of nested configurations
嵌套配置的 Grobner 基
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:S. Aoki;T. Hibi;H. Ohsugi;A. Takemura
- 通讯作者:A. Takemura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIBI Takayuki其他文献
HIBI Takayuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIBI Takayuki', 18)}}的其他基金
A challenge of solving the normality conjecture for cut polytopes affirmatively which yields a theoretical proof of the four color theorem
肯定地解决切割多胞形的正态猜想的挑战,从而产生四色定理的理论证明
- 批准号:
25610032 - 财政年份:2013
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on open problems arising from convex polytopes with strategies of the developed theory of Groebner bases
用格罗布纳基底发展理论的策略研究凸多胞体引起的开放问题
- 批准号:
22340008 - 财政年份:2010
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of universal Grobner bases of zero-dimensional lattice ideals
零维晶格理想通用格罗布纳基的研究
- 批准号:
15340007 - 财政年份:2003
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundation of computational Commutative algebra with a view toward combinatorics on convex polytopes
计算交换代数的基础,着眼于凸多面体的组合学
- 批准号:
09440013 - 财政年份:1997
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
数値数式融合計算による準素分解の高速化
通过数值公式融合计算加速半初等分解
- 批准号:
22K13901 - 财政年份:2022
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
代数的言語理論と類体論の融合研究
代数语言理论与类域论的融合研究
- 批准号:
22K03248 - 财政年份:2022
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Further development of algorithms for Groebner basis computation
Groebner 基础计算算法的进一步开发
- 批准号:
18K03432 - 财政年份:2018
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Uniformity of Zeta Functions
Zeta 函数的一致性
- 批准号:
15H03612 - 财政年份:2015
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a wristwatch-type stress calorie meter and its application in young, middle-aged, and elderly people
手表式压力热量计的研制及其在青、中、老年人中的应用
- 批准号:
15K00853 - 财政年份:2015
- 资助金额:
$ 10.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)