Building resources and a model for computing paraphrase based on lexical semantics

构建基于词汇语义的释义计算资源和模型

基本信息

  • 批准号:
    17300047
  • 负责人:
  • 金额:
    $ 10.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Aiming at building a computational model and computational recourses for computing paraphrase at the level of predicate-argument structure, this research project gained the following results:(i) For paraphrase knowledge, a large-scale hierarchical lexicon of predicate-argument structure was built. The lexicon organizes about 4,000 Japanese basic verbs (about 7,000 senses in total) with predicate-argument structure information in a fine-grained semantic hierarchy so that lexical entries in a semantic class can be regarded as near synonyms. For augmenting this knowledge base, additional knowledge about event relations are extracted from glosses found in a human-use dictionary of Japanese. Over 35,000 relations are extracted and classified into 8 relation types, all of which are considered useful for recognizing paraphrase or textual entailment.(ii) For scaling the basic paraphrase knowledge above, automatic acquisition of semantic relations between events from a large corpus was also exp … More lored. We proposed several extensions to a state-of-the-art method originally designed for entity relation extraction, reporting on the present results of our experiments on a Japanese Web corpus. The results show that (a) there are indeed specific cooccurrence patterns useful for event relation acquisition, (b) the use of cooccurrence samples involving verbal nouns has positive impacts on both re-call and precision, and (c) over five thousand relation instances are acquired from a 500M-sentence Web corpus with a precision of about 66% for action-effect relations.(iii) For building a computational model of paraphrase, we explore the regularity underlying these classes of paraphrases, focusing on the paraphrasing of Japanese light-verb constructions (LVCs). We propose a paraphrasing model for LVCs that is based on transforming the Lexical Conceptual Structures (LCSs) of verbal elements. We also propose a refinement of an existing LCS dictionary. Experimental results show that our LCS-based paraphrasing model characterizes some of the semantic features of those verbs required for generating paraphrases, such as the direction of an action and the relationship between arguments and surface cases. Less
旨在建立一个计算模型和计算重新解释在谓词 - 题材结构拱门项目的水平上获得了以下结果:(i)词汇知识的词汇量。可以将班级视为增强这一知识基础的近乎同义词。 。特定的协同性模式对事件的审判很有帮助,(b)使用辅助样品样品言语名词对重新呼叫和精确的措辞都有积极的影响,并且((c)超过五千个关系的实例是从500m ensence sentence web获取的对于释义的计算模型,我们探索了释义类别的规律性,探索了释义的措施,该措辞的精度约为66%。对于基于毒性的LVC。产生释义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Acquiring Event Relation Knowledge by Learning Cooccurrence Patterns and Fertilizing Cooccurrence Samples with Verbal Nouns
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuya Abe;Kentaro Inui;Yuji Matsumoto
  • 通讯作者:
    Shuya Abe;Kentaro Inui;Yuji Matsumoto
「研究成果報告書概要(和文)」より
摘自《研究结果报告摘要(日文)》
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kawauchi;et. al.;Nishimura et al.;Dezawa et al.;Yoshizawa et al.;星野 幹雄;星野 幹雄
  • 通讯作者:
    星野 幹雄
Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences
用大量例句来扩充语义动词词典
Building a paraphrase corpus by class-oriented example sampling
通过面向类别的示例采样构建释义语料库
A lexical semantic approach to computational modeling of paraphrase
释义计算建模的词汇语义方法
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kentaro;Inui
  • 通讯作者:
    Inui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INUI Kentaro其他文献

INUI Kentaro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INUI Kentaro', 18)}}的其他基金

Supporting the effective use of health-related online information through the enhancement of health literacy
通过提高健康素养支持有效利用与健康相关的在线信息
  • 批准号:
    23240018
  • 财政年份:
    2011
  • 资助金额:
    $ 10.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

基于深度学习的中文文本蕴涵关系识别技术研究
  • 批准号:
    61762081
  • 批准年份:
    2017
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目
基于推理现象的中文文本推理资源建设和自动分析研究
  • 批准号:
    61402341
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了