On the study of the theory of viscosity solutions and its new developments
论粘度解理论的研究及其新进展
基本信息
- 批准号:16340032
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Aleksandrov-Bakelman-Pucci maximum principle for Lp-viscosity solutions of fully nonlinear second order uniformly elliptic/parabolic partial differential equations with possibly superllinear growth terms of the first derivatives, unbounded coefficients, unbounded inhomogeneous terms has been established under appropriate hypotheses in two research papers with A. Swiech. Some counter-examples have been presented when there are no hypotheses.Perron's method has been first applied to Lp-viscosity solutions of fully nonlinear elliptic partial differential equations by introducing semicontinuous Lp-visosity solutions.For several nonlinear variational inequalities arising in Mathematical Finance, optimal controls have been constructed by showing that associated value functions admit enough regularity in research papers with H. Morimoto, and H. Morimoto and S. Sakaguchi.
两项研究在适当的假设下建立了具有一阶导数、无界系数、无界非齐次项可能超线性增长项的完全非线性二阶一致椭圆/抛物型偏微分方程的 Lp 粘度解的 Aleksandrov-Bakelman-Pucci 最大原理与 A. Swiech 合作的论文。在没有假设的情况下,给出了一些反例。Perron方法通过引入半连续Lp-粘度解,首次应用于完全非线性椭圆偏微分方程的Lp-粘度解。对于数学金融中出现的几种非线性变分不等式,最优在 H. Morimoto、H. Morimoto 和 S. Sakaguchi 的研究论文中,通过证明相关价值函数具有足够的规律性,构建了控制。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum principle for fully nonlinea PDEs via the iterated comparison function method
通过迭代比较函数法实现完全非线性偏微分方程的极大值原理
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:N.;Nakayama;向井茂;S. Koike;向井茂;S. Koike
- 通讯作者:S. Koike
Maximum principle and existence of Lp-viscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms
- DOI:10.1007/s00030-004-2001-9
- 发表时间:2004-12
- 期刊:
- 影响因子:0
- 作者:Shigeaki Koike;Andrzej Świch
- 通讯作者:Shigeaki Koike;Andrzej Świch
Maximum principle for fully nonlinear PDEs via the iterated comparison function method
通过迭代比较函数法实现完全非线性偏微分方程的极大值原理
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:K.;Oguiso;S. Koike;S. Koike
- 通讯作者:S. Koike
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOIKE Shigeaki其他文献
KOIKE Shigeaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOIKE Shigeaki', 18)}}的其他基金
Viscosity solution theory for fully nonlinear equations and its applications
全非线性方程粘度解理论及其应用
- 批准号:
20340026 - 财政年份:2008
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Optimal Controls and Differential Games via the Viscosity Solution Theory
基于粘性解理论的最优控制与微分博弈研究
- 批准号:
12640103 - 财政年份:2000
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications to the optimal control and differential game via the viscosity solution theory
通过粘度解理论在最优控制和微分博弈中的应用
- 批准号:
09640242 - 财政年份:1997
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
几何中完全非线性椭圆偏微分方程的斜边值问题
- 批准号:11601311
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
金融数学中的完全非线性方程的自由边界问题
- 批准号:11601163
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
关于带边流形上的k-Yamabe问题的研究
- 批准号:11301547
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
几何中的若干椭圆偏微分方程
- 批准号:11301087
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无穷维空间非线性方程的非完全分歧理论及其应用
- 批准号:10926060
- 批准年份:2009
- 资助金额:4.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Mathematical Sciences: Free Boundary Problems, Fully Nonlinear Equations, Nonlinear Parabolic Equations, and the Navier-Stokes Equation
数学科学:自由边界问题、完全非线性方程、非线性抛物型方程和纳维-斯托克斯方程
- 批准号:
8804567 - 财政年份:1988
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant