User Friendly Speech Recognition Algorithm with Adaptability for Environments and Users

用户友好的语音识别算法,具有对环境和用户的适应性

基本信息

  • 批准号:
    15300060
  • 负责人:
  • 金额:
    $ 10.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The research plan includes the following topics,1. Noise reduction signal processing, accurate phoneme modeling, and speaker and environment adaptation.2. Task adapted language model for accepting spontaneous utterances.3. Hands-free speech recognition interface.4. Study of human factors for speech dialog system.These investigations have been studied based on real world speech dialog systems.The main attained research results are summarized as follows.1. Unsupervised speaker adaptation algorithm based on an arbitrary utterance has been developed, which takes only several seconds, and shows almost same accuracy as supervised adaptation MLLR based on 50 utterances.2. Task adapted language models have been developed for children and adults using two year Takemaru-kun transcribed texts. By introducing parallel decoding for children and adults, we attain the improvements of word accuracy and response accuracy.3. Hands-free speech recognition has been implemented based on null-beamformer type SSA (Spatial Subtraction Array) and BSSA (Blind SSA) with SIMO-ICA.4. We have been successfully operating Takemaru-kun speech guidance system in Ikoma North community center these four years. We have been also operating two speech guidance systems in local railway station this one year, to study about noisy condition. The collected speech database with the transcription is useful to develop speech dialog systems.We also invented a new quiet speech media, Non-Audible Murmur (NAM), which applied to quiet speech recognition and quiet telephone. This invention awarded by IEICE paper prize and Inose award.
研究计划包括以下主题,1。降噪信号处理,准确的音素建模以及扬声器和环境适应。2。任务改编的语言模型,用于接受自发话语3。免提语音识别接口4。根据现实世界语音对话系统进行了研究的人为因素的研究。这些研究的研究结果总结了如下。1。已经开发了基于任意话语的无监督的说话者适应算法,仅需几秒钟,并且基于50个话语显示与受监督的适应性MLLR几乎相同的准确性。2。使用两年的takemaru-kun抄录文本为儿童和成人开发了任务调整的语言模型。通过为儿童和成人引入并行解码,我们可以提高单词准确性和响应准确性3。无提机语音识别是基于Null-BeamFormer型SSA(空间减法阵列)和BSSA(盲人SSA)实现的。4。这四年,我们已经成功地在Ikoma North社区中心运营了Takemaru-Kun语音指导系统。这一年我们还在当地火车站运营两个语音指导系统,以研究嘈杂的状况。带有转录的收集的语音数据库对于开发语音对话系统很有用。我们还发明了一种新的安静的语音媒体,不可察觉的杂音(NAM),该媒体适用于安静的语音识别和安静的电话。这项发明由IEICE纸奖和Inose奖授予。

项目成果

期刊论文数量(420)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Fildeity Blind Separation of Acoustic Signals using SIMO-Model-Based ICA with Information-Geometric Learning
使用基于 SIMO 模型的 ICA 和信息几何学习对声学信号进行高保真度盲分离
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoya Takatani;Tsuyoki Nishikawa;Hiroshi Saruwatari;Kiyohiro Shikano
  • 通讯作者:
    Kiyohiro Shikano
Stable Learning Algorithm for Blind Separation of Temporally Correlated Signals Combining Multistage ICA and Linear Prediction
结合多级 ICA 和线性预测的时间相关信号盲分离的稳定学习算法
Two-Stage Blind Source Separation Using SIMO-ICA and Binary Masking
使用 SIMO-ICA 和二进制掩蔽的两级盲源分离
Model-Integration Rapid Training based on Maximum Likelihood for Speech Recognition
基于最大似然的模型集成快速训练语音识别
Blind source separation based on a fast-convergence algorithm combining ICA and beamforming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIKANO Kiyohiro其他文献

SHIKANO Kiyohiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIKANO Kiyohiro', 18)}}的其他基金

Noise Adaptation Algorithm in Japanese Dictation System and its Evaluation
日语听写系统中的噪声自适应算法及其评估
  • 批准号:
    10680382
  • 财政年份:
    1998
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for Japanese Dictation System
日语听写系统研究
  • 批准号:
    08680399
  • 财政年份:
    1996
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

面向情感计算的智能语音对话系统响应生成
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
口语对话系统技术在自由表述语言学习中的应用研究-以新疆少数民族学生的普通话学习为例
  • 批准号:
    61365005
  • 批准年份:
    2013
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Noise-robust speech recognition and spoken dialog system for service robots
用于服务机器人的抗噪声语音识别和语音对话系统
  • 批准号:
    19K24343
  • 财政年份:
    2019
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on Speech Recognition for Spoken Dialog System
口语对话系统语音识别研究
  • 批准号:
    21700204
  • 财政年份:
    2009
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on speech synthesis for humanoid spoken dialog system
仿人口语对话系统语音合成研究
  • 批准号:
    21800020
  • 财政年份:
    2009
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developping a system for dialog support to the hard of hearing via speech recognition and character display
开发一个通过语音识别和字符显示为听力障碍人士提供对话支持的系统
  • 批准号:
    18500127
  • 财政年份:
    2006
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Ambiguous Utterance Understanding for Speech Input
语音输入的歧义话语理解研究
  • 批准号:
    03452167
  • 财政年份:
    1991
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了