User Friendly Speech Recognition Algorithm with Adaptability for Environments and Users

用户友好的语音识别算法,具有对环境和用户的适应性

基本信息

  • 批准号:
    15300060
  • 负责人:
  • 金额:
    $ 10.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The research plan includes the following topics,1. Noise reduction signal processing, accurate phoneme modeling, and speaker and environment adaptation.2. Task adapted language model for accepting spontaneous utterances.3. Hands-free speech recognition interface.4. Study of human factors for speech dialog system.These investigations have been studied based on real world speech dialog systems.The main attained research results are summarized as follows.1. Unsupervised speaker adaptation algorithm based on an arbitrary utterance has been developed, which takes only several seconds, and shows almost same accuracy as supervised adaptation MLLR based on 50 utterances.2. Task adapted language models have been developed for children and adults using two year Takemaru-kun transcribed texts. By introducing parallel decoding for children and adults, we attain the improvements of word accuracy and response accuracy.3. Hands-free speech recognition has been implemented based on null-beamformer type SSA (Spatial Subtraction Array) and BSSA (Blind SSA) with SIMO-ICA.4. We have been successfully operating Takemaru-kun speech guidance system in Ikoma North community center these four years. We have been also operating two speech guidance systems in local railway station this one year, to study about noisy condition. The collected speech database with the transcription is useful to develop speech dialog systems.We also invented a new quiet speech media, Non-Audible Murmur (NAM), which applied to quiet speech recognition and quiet telephone. This invention awarded by IEICE paper prize and Inose award.
研究计划包括以下课题: 1.降噪信号处理、精确音素建模、说话人和环境适应。2.用于接受自发话语的任务适应语言模型。 3.免提语音识别接口。4.语音对话系统的人为因素研究。这些研究是基于现实世界的语音对话系统进行的。主要研究成果总结如下: 1.开发了基于任意话语的无监督说话人自适应算法,该算法仅需几秒钟,并且显示出与基于50个话语的有监督自适应MLLR几乎相同的精度。 2.使用竹丸君两年的转录文本,为儿童和成人开发了适应任务的语言模型。通过引入针对儿童和成人的并行解码,我们实现了单词准确率和响应准确率的提高。 3.基于零波束形成器类型 SSA(空间减法阵列)和 BSSA(盲 SSA)以及 SIMO-ICA.4 实现了免提语音识别。这四年来,我们在生驹北社区中心成功运营了竹丸君语音引导系统。今年我们还在当地火车站运行了两个语音引导系统,以研究噪声情况。收集到的带有转录的语音数据库对于开发语音对话系统很有用。我们还发明了一种新的安静语音媒体——非可听杂音(NAM),它应用于安静语音识别和安静电话。该发明荣获IEICE论文奖和Inose奖。

项目成果

期刊论文数量(420)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two-Stage Blind Source Separation Using SIMO-ICA and Binary Masking
使用 SIMO-ICA 和二进制掩蔽的两级盲源分离
Blind source separation based on a fast-convergence algorithm combining ICA and beamforming
High-Fildeity Blind Separation of Acoustic Signals using SIMO-Model-Based ICA with Information-Geometric Learning
使用基于 SIMO 模型的 ICA 和信息几何学习对声学信号进行高保真度盲分离
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoya Takatani;Tsuyoki Nishikawa;Hiroshi Saruwatari;Kiyohiro Shikano
  • 通讯作者:
    Kiyohiro Shikano
Model-Integration Rapid Training based on Maximum Likelihood for Speech Recognition
基于最大似然的模型集成快速训练语音识别
Stable Learning Algorithm for Blind Separation of Temporally Correlated Signals Combining Multistage ICA and Linear Prediction
结合多级 ICA 和线性预测的时间相关信号盲分离的稳定学习算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIKANO Kiyohiro其他文献

SHIKANO Kiyohiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIKANO Kiyohiro', 18)}}的其他基金

Noise Adaptation Algorithm in Japanese Dictation System and its Evaluation
日语听写系统中的噪声自适应算法及其评估
  • 批准号:
    10680382
  • 财政年份:
    1998
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for Japanese Dictation System
日语听写系统研究
  • 批准号:
    08680399
  • 财政年份:
    1996
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

面向情感计算的智能语音对话系统响应生成
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
口语对话系统技术在自由表述语言学习中的应用研究-以新疆少数民族学生的普通话学习为例
  • 批准号:
    61365005
  • 批准年份:
    2013
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Noise-robust speech recognition and spoken dialog system for service robots
用于服务机器人的抗噪声语音识别和语音对话系统
  • 批准号:
    19K24343
  • 财政年份:
    2019
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on Speech Recognition for Spoken Dialog System
口语对话系统语音识别研究
  • 批准号:
    21700204
  • 财政年份:
    2009
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study on speech synthesis for humanoid spoken dialog system
仿人口语对话系统语音合成研究
  • 批准号:
    21800020
  • 财政年份:
    2009
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developping a system for dialog support to the hard of hearing via speech recognition and character display
开发一个通过语音识别和字符显示为听力障碍人士提供对话支持的系统
  • 批准号:
    18500127
  • 财政年份:
    2006
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Ambiguous Utterance Understanding for Speech Input
语音输入的歧义话语理解研究
  • 批准号:
    03452167
  • 财政年份:
    1991
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了