Mathematical analysis of interface problems in mathematical physics

数学物理中界面问题的数学分析

基本信息

项目摘要

In this research, we consider the Stokes equation with Neumann boundary condition which is obtained as a linearized equation of the free boundary problem for the Navier-Stokes equation. We analyzed this problem by the following procedure : (1) Analysis of the resolvent problem (2) Generation of Analytic semigroups (3) L_p-L_q estimates(1)Obtained is the L_p estimate of solutions to the resolvent problem for Stokes system with Neumann type boundary condition in a bounded or exterior domain in R^n. The result has been obtained by Grubb and Solonnikov by the systematic use of theory of pseudo-differential operators. In this paper, we give an essentially different proof from theirs. The core of my approach is to estimate the solutions in the whole space and half-space case. We apply the Fourier multiplier theorem to solution of the model problems.(2)First we introduce the Helmholtz decomposition. Then we delete pressure trem and reduce to the problem only including velocity vector. Then we generated analytic semigroup to this reduced Stokes equation.(3)We obtained local energy decay estimates and L_p-L_q estimates of the solutions to the Stokes equation with Neumann boudary condition. Comparing with the non-slip (Dirichlet) boundary condition case, we have a better decay estimate for the gradient of the semigroup because of the null net force at the boundary.
在这项研究中,我们考虑了具有Neumann边界条件的Stokes方程,该方程是作为Navier-Stokes方程的自由边界问题的线性化方程。我们通过以下步骤分析了此问题:(1)分析问题(2)分析性分析的分析(3)获得的L_P-L_Q估计值(1)是在r^n中使用noumann类型边界结构域中使用Neumann类型边界条件的Stokes System解决方案解决方案的L_P估计值。结果是通过Grubb和Solonnikov通过系统使用伪差异算子的系统来获得的。在本文中,我们给出了与他们的基本不同的证据。我的方法的核心是估计整个空间和半空间情况下的解决方案。我们将傅立叶乘数定理应用于模型问题的解决方案。(2)首先,我们引入了Helmholtz分解。然后,我们删除压力trem并减少到包括速度向量在内的问题。然后,我们生成了该减少的Stokes方程的分析半群。(3)我们获得了具有Neumann Boudary条件的Stokes方程的溶液的局部能量衰减估计值和L_P-L_Q估计值。与非滑动(Dirichlet)边界条件情况相比,由于边界处的无效净力,我们对Semigroup的梯度有更好的衰减估计值。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the L_p and Schauder estimates of solutions to elastostatic interface problems.
关于弹性界面问题解的 L_p 和 Schauder 估计。
Local energy decay of solutions to the Oseen equation in the exterior domains
外部域 Oseen 方程解的局部能量衰减
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshihiro Shibata;Y.Enomoto
  • 通讯作者:
    Y.Enomoto
Wave front sets of the Riemann function of elastic interface problems
弹性界面问题的黎曼函数波前集
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Hoshiga;Hideo Kubo;Akira Hoshiga;Shinji Adachi;Shinji Adachi;Senjo Shimizu
  • 通讯作者:
    Senjo Shimizu
Yoshihiro Shibata, Senjo Shimizu: "On a resolvent estimate for the Stokes system with Neumann boundary condition"Differential Integral Equations. 発表予定(to appear). (2003)
Yoshihiro Shibata,Senjo Shimizu:“关于具有诺伊曼边界条件的斯托克斯系统的解析估计”微分积分方程出现(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro Shibata, Senjo Shimizu: "Some resolvent estimates for the Stokes system in bounded and exterior domains."Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis (Hirosaki, 2001). 451-461 (2003)
Yoshihiro Shibata、Senjo Shimizu:“对有界域和外部域中的斯托克斯系统的一些解析估计。”非线性分析和凸分析国际会议记录(Hirosaki,2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 22 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

SHIMIZU Senjo的其他基金

Free boundary problems of flows - kinematic undercooling and instability -
流动的自由边界问题 - 运动学过冷和不稳定性 -
  • 批准号:
    23654048
    23654048
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
    Grant-in-Aid for Challenging Exploratory Research
Maximal regularity theory and its application
最大正则理论及其应用
  • 批准号:
    20540164
    20540164
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
The approach of an analytic semigroup for free boundary problems of viscous compressible fluids
粘性可压缩流体自由边界问题的解析半群方法
  • 批准号:
    17540156
    17540156
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

具有指数Neumann边界条件的Liouville型方程解的存在性
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目