Study of Numerical Methods for Wave Propagation Phenomena in Unbounded Region and its Applications

无界区域波传播现象的数值方法研究及其应用

基本信息

  • 批准号:
    14540106
  • 负责人:
  • 金额:
    $ 2.56万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

The purpose of this research project is to develop the approximation methods for wave propagation problems in unbounded region and as its applications we study the numerical simulation of voice generation. We formulate the problem as the exterior Helmholtz equation, and reduce the problem to the one in a bounded region by introducing the artificial boundary condition on an artificial boundary. We developed the numerical methods for this problem based on the finite element discretization method and study the application problems including the voice generation.The results of the head investigator Kako are the followings. He found out the variational formula of the complex eigenvalues with respect to the deformation of vocal tract. The eigenvalues are related to the formants of frequency response function that is important for voice generation. He then developed the algorithm for designing the shape of vocal tract by use of the variational formula, and validated the algorithm through nume … More rical simulations. He also studied the application of the Finite Difference Time Domain method to the acoustic problem and obtained several basic results.For the voice problem, Yoshida developed the method to obtain the mapping from the articulation parameters to the phonetic transmission characteristics by use of the neural networks. Suito studied the shape optimization problem for minimizing the reflection of the wave propagating in a tubular region with spatially changing impedance parameters and obtained unusual numerical results.Related to the numerical methods for the wave problem, Koyama studied the three dimensional Helmholtz problem by use of the fictitious domain method and derived the a priori error estimates for the approximation, and investigated the validity by some numerical experiences. Ushijima studied the Helmholtz problem by the collocation method based on the fundamental solutions and obtained a sufficient condition for the exponential convergence of the approximate solution and tried to validate of the theoretical results by multi-precision arithmetic computation.As for the numerical methods for solving large linear equations appearing in the application problems including the Helmholtz equation, Zhang studied the fast and efficient iteration methods. Imamura developed the automatic tuning techniques with high actuary and stability in the implementation for the parallel computation methods for the large linear systems. Less
本研究项目的目的是开发无界区域中波传播问题的近似方法,作为其应用,我们研究了语音生成的数值模拟,我们将问题表述为外亥姆霍兹方程,并将问题简化为方程。通过在人工边界上引入人工边界条件,我们开发了基于有限元离散化方法的有界区域的数值方法,并研究了包括语音生成在内的应用问题。首席研究员Kako的结果是他找到了关于声道变形的复特征值的变分公式,该特征值与对语音生成很重要的频率响应函数的共振峰有关。他还研究了时域有限差分方法在声学问题中的应用,并获得了一些基本结果。为了解决这个问题,Yoshida 开发了一种方法,利用神经网络获得从发音参数到语音传输特性的映射,Suite 研究了形状优化问题,以最小化在具有空间变化的阻抗参数的管状区域中传播的波的反射。获得了不同寻常的数值结果。与波浪问题的数值方法相关,小山利用虚拟域方法研究了三维亥姆霍兹问题,并推导了近似的先验误差估计,并Ushijima等人通过一些数值经验研究了亥姆霍兹问题的基本解的配置方法,得到了近似解指数收敛的充分条件,并尝试通过多精度算术计算来验证理论结果。针对亥姆霍兹方程等应用问题中出现的求解大型线性方程组的数值方法,张教授研究了快速高效的迭代方法,在实施过程中发展了精算度高、稳​​定性好的自动整定技术。大型线性系统的并行计算方法。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
円外帰着波動問題基本解近似解法への多倍長数値計算の適用
多精度数值计算在外圆递推波问题基本近似解中的应用
Chiba, F., Kako, T.: "Newmark's method and discrete energy applied to resistive MHD equation"Vietnam Journal of Mathematics. (掲載予定). (2003)
Chiba, F., Kako, T.:“纽马克方法和离散能量应用于电阻 MHD 方程”越南数学杂志(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Variant of the Orthomin(2) Method for Singular Linear Systems
奇异线性系统 Orthomin(2) 方法的变体
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuniyoshi ABE;Shao-Liang ZHANG
  • 通讯作者:
    Shao-Liang ZHANG
Nasir, H.M., Kako, T., Koyama, D.: "A mixed type finite element approximation for radiation problems using fictitious domain method"Journal of Computational and Applied Mathematics. 152. 377-392 (2003)
Nasir, H.M.、Kako, T.、Koyama, D.:“使用虚拟域方法的辐射问题的混合型有限元近似”计算与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ushijima, T.: "Equi-distant collocation method for periodic functions with kernel expression"Proceedings of Fifth China-Japan Joint Seminar on Numerical Mathematics. 220-226 (2002)
牛岛T.:“带核表达式的周期函数的等距配置方法”第五届中日数值数学联合研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAKO Takashi其他文献

KAKO Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAKO Takashi', 18)}}的其他基金

Study on numerical methods of wave propagation phenomena and its applications to information and energy transmission problems
波传播现象的数值方法及其在信息和能量传输问题中的应用研究
  • 批准号:
    21540116
  • 财政年份:
    2009
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical methods for wave propagation phenomena in unbounded region and its applications to shape design problems
无界区域波传播现象的数值方法及其在形状设计问题中的应用
  • 批准号:
    18540114
  • 财政年份:
    2006
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on non-standard finite element approximation methods for partial differential equations
偏微分方程非标准有限元逼近方法研究
  • 批准号:
    11440027
  • 财政年份:
    1999
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

变密度电流体动力学模型的高效有限元方法
  • 批准号:
    12371372
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
准静态的非线性热多孔弹性力学模型稳定的全离散多物理场有限元方法及其应用
  • 批准号:
    12371393
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
间断Galerkin有限元方法及其自适应并行计算
  • 批准号:
    12302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可变扩散系数非局部问题的分布式可扩展的有限元并行计算方法
  • 批准号:
    12301496
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
修正偶应力问题的有限元方法
  • 批准号:
    12301529
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
  • 批准号:
    23K08691
  • 财政年份:
    2023
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of auxetic metamaterials using deep learning
使用深度学习设计拉胀超材料
  • 批准号:
    22KJ0407
  • 财政年份:
    2023
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Biomechanical Treatment of CTS Via Carpal Arch Space Augmentation: A Pilot Clinical Trial
通过腕弓间隙增大治疗 CTS 的生物力学治疗:初步临床试验
  • 批准号:
    10725257
  • 财政年份:
    2023
  • 资助金额:
    $ 2.56万
  • 项目类别:
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.56万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了