RESEARCH ON ERGODIC PROBLEMS IN HAMILTONIAN DYNAMICS
哈密顿动力学中各态历经问题的研究
基本信息
- 批准号:02640296
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1992
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. The origin of the long time tail was explained from the scaling structures immersed in the stagnant layr. We have propsed the stagnant layr theory to characterize the non-stationrity and the multi-ergodicity of Hamiltonian dynamics. Computer simulations regarding scattering processes and lattice vibrations have justified the theoretical results.2. The irregulatiry of wave functions and energy levels was characterized from the viewpoint of quantum chaos. The Gutzwiller formulae was rederived from the semi-classical approximation of the finite element method.3. The origin of the irreversibility, both in quantal and in classical, was discussed from the weak convergence of the distribution function. The irreversibility in quantal systems was especially surmised to occur in the limit (〕SY.plcnst.〔)->0 for Hushimi functions.
1.从停滞层中的尺度结构解释了长时间尾的起源。我们提出了停滞层理论来表征哈密顿动力学的计算机模拟的非平稳性和多遍历性。 2.从量子混沌的角度重新推导了波函数和能级的不规则性。 3.从分布函数的弱收敛性出发,讨论了量子不可逆性和经典不可逆性的根源。 (]SY.plcnst.〔)->0 对于 Hushimi 函数。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AIZAWA Yoji其他文献
AIZAWA Yoji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AIZAWA Yoji', 18)}}的其他基金
Multi ergodicity in nearly integrable Hamiltonian systems and large deviation properties of infinite ergodic systems
近可积哈密顿系统的多重遍历性和无限遍历系统的大偏差性质
- 批准号:
21540399 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ergodicity and Transport Phenomena in Hamiltonian Systems under Non-equilibrium Conditions
非平衡条件下哈密顿系统的遍历性和输运现象
- 批准号:
18540383 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ergodic and Kinetic Properties of Hamiltonian Dynamical Systems
哈密顿动力系统的遍历和动力学性质
- 批准号:
09640472 - 财政年份:1997
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The origin of 1/f spectrum fluctuation in the hamiltonian dynamics for lattice systems.
晶格系统哈密顿动力学中 1/f 谱涨落的起源。
- 批准号:
06640515 - 财政年份:1994
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The origin of 1/f spectrum fluctuation in the hamiltonian dynamics for lattice systems.
晶格系统哈密顿动力学中 1/f 谱涨落的起源。
- 批准号:
06640515 - 财政年份:1994
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)