Localized And Homoclinic Solutions of a Nonlinear Wave Equation in Two-Dimensional Space
二维空间中非线性波动方程的定域同宿解
基本信息
- 批准号:13640395
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The analysis on stability of nonlinear phenomena in multidimensions has not been studied sufficiently, although it is important to apply the theory of nonlinear integrable system to higher dimensions. The purpose of this research project is to establish a basis of such an analysis by deriving homoclinic type solutions for the Davey-Stewartson (DS) equation, which is one of the typical integrable models in two-dimensions.In order to derive homoclinic solutions, we analyzed the plane wave solution and associated Jost functions for the DS equation, and found that the growth rate of the Jost functions has given in terms of the wave number. Secondly, we have studied the time development of the disturbance caused in the plane wave. As a result, we derived a relation of the growth rate of the perturbation. We have found that the small fluctuations on the boundary can be neglected in the course of time under usual boundary conditions, and the growth of disturbance is determined only by the wave number of the plane wave solutions and the disturbance.Next, we derived the Darboux-type transform for the DS equations in a form which is useful to derive homoclinic solutions. To avoid the complexity of the dependence of Lax pairs on space derivative operators, we have introduced an additional conditions for Jost functions, which reflects the relation between the DS and the nonlinear Schrodinger equation, and the structures of the DS equation. Finally, some explicit expressions of new types of solutions from the plane wave solutions and Darboux-type transform have derived.
关于多维中非线性现象稳定性的分析尚未得到充分研究,尽管将非线性整合系统的理论应用于更高的维度很重要。 The purpose of this research project is to establish a basis of such an analysis by deriving homoclinic type solutions for the Davey-Stewartson (DS) equation, which is one of the typical integrable models in two-dimensions.In order to derive homoclinic solutions, we analyzed the plane wave solution and associated Jost functions for the DS equation, and found that the growth rate of the Jost functions has given in terms of the wave number.其次,我们研究了平面波造成的干扰的时间发展。结果,我们得出了扰动的增长率的关系。我们发现,在通常的边界条件下,在时间的过程中可以忽略边界上的小波动,而干扰的生长仅取决于平面波溶液的波数和干扰。我们得出了DARBOUX-type Type Transformation的DS方程,以一种有用的形式,可用于得出同源物质溶液。为了避免LAX对依赖对空间衍生物的依赖性的复杂性,我们为JOST函数引入了其他条件,这反映了DS与非线性Schrodinger方程之间的关系以及DS方程的结构。最后,从平面波解决方案和darboux型变换中得出了一些新型溶液的明确表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAJIMA Tetsu其他文献
YAJIMA Tetsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Differential geometric approach to discrete surfaces
离散曲面的微分几何方法
- 批准号:
15K04845 - 财政年份:2015
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the integrable systems in mathematical physics and applied analysis
数学物理可积系统研究及应用分析
- 批准号:
15540219 - 财政年份:2003
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the spectrum and the monodromy related to the algebro-geometric potentials
与代数几何势相关的谱和单峰性研究
- 批准号:
13640195 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Integrability of Evolution Equations with Computer
演化方程的计算机可积性研究
- 批准号:
11640140 - 财政年份:1999
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)