Research of log-hyponormal operator and the Furuta inequality
对数次正规算子和Furuta不等式的研究
基本信息
- 批准号:12640187
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
T. Furuta discovered a very interesting operator inequality, which is an extension of Lowner-Heinz's inequality. Now the inequality is called the Furuta inequality and many generalizations and application has been developed. T. Furuta proved the grand Furuta inequality which contains the Furuta inequality and Ando-Hiai's inequality. Also, M. Fujii proved many inequalities with respect to chaotic order. A. Aluthge used the Furuta inequality to study p-hyponormal operators and succeeded to prove many interesting properties of p-hyponormal operators. The aim of this research is to develop the theory of operator inequality and study the properties of p-hyponormal, log-hyponormal and related classes of operators.In this research, Tanahashi proved the best possibility of grand Furuta inequality and proved that the Furuta inequality holds for Banach ^*-algebra with A. Uchiyama. Tanahashi proved Putnam's inequality and angular cutting property holds for log-hyponormal operators. Also, Tanahash … More i proved that the Riesz idempotent for non-zero isolated point of spectrum of p-hyponormal, p-quasihyponormal, log-hyponormal, class A operators is self-adjoint with M. Cho, A. Uchiyama. Also, Tanahashi proved Schwarz type operator inequalities which are extensions of Heinz-Kato inequality with A. Uchiyama and M. Uchiyama. Also, Tanahashi proved many spectral relations of Aluthge transform with M. Cho.Takemoto introduced a notion of numerical ranges for the elements of any von Neumann algebra by using the predual space of von Neumann algebra and showed the following properties : The first result is that the introduced notion of numerical range for any element of von Neumann algebra acting on a Hilbert space equivalents to the usual notion of numerical ranges for any operator on a Hilbert space. The second result is that by using the aboved mentioned result the numerical range of each operator is invariant under the ^*-isomorphism of the von Neumann algebra generated by the element.Miura introduced the partial order on the set of all bounded operators on a complex Hilbert space with a selfdual cone in the sense that the difference of two operators preserves the cone and showed the Radon-Nikodym type theorem for operators a standard Hilbert space. Moreover, Miura proved the majorization property of operators of Hilbert-Schmidt class in a matrix ordered standard form from the point of view of complete positivity. Miura also proved that a not necessarily ^*-preserving homomorphism between matrix ordered von Neumann algebras and a complete order homomorphism between the underlying Hilbert spaces correspond to each other by applying the characterization of non-commutative L2-spaces in the work of Schmitt-Wittstock. In particular, a ^*-preserving homomorphism corresponds to a orthogonal decomposition homomorphism. Less
T. furuta发现了一个非常有趣的操作员不平等,这是下海因兹的不平等现象的延伸。现在,不平等被称为Furuta不平等,并且已经开发出许多概括和应用。 T. furuta证明了大呋喃不平等,其中包含Furuta不平等和Ando-Hiai的不平等。同样,富士菌在混乱的秩序方面证明了许多不平等现象。 A. Aluthge使用Furuta不等式研究了P-螺旋正常运算符,并成功证明了P-夏季性算子的许多有趣特性。这项研究的目的是发展操作者的不平等理论,并研究了操作员的p- - 螺旋正常,虫质正常和相关类别的特性。在这项研究中,塔纳哈西证明了大呋喃不平等的最佳可能,并证明了furuta不平等的不平等是Banach ^*-Algebra与A. A. Uchiyama所具有的。塔纳希(Tanahashi)证明了普特南(Putnam)的不平等和角度切割属性,可用于对数 - 夏季正常运营商。另外,塔纳哈什(Tanahash)…更多,我证明了riesz dimpotent用于非零孤立点的p- - 甲基频谱,p-季度,p- quasihyponormal,log-hyponormor,A类操作员与M.此外,塔纳哈西(Tanahashi)提供了施瓦茨(Schwarz)类型的操作员不平等,这些不平等是亨氏 - 卡托(Heinz-kato)与A. Uchiyama和M. Uchiyama的不平等。 Also, Tanahashi provided many spectral relations of Aluthge transform with M. Cho.Takemoto introduced a notification of numerical ranges for the elements of any von Neumann algebra by using the predual space of von Neumann algebra and showed the following properties: The first result is that the introduced notification of numerical ranges for any element of von Neumann algebra acting on a Hilbert space equivalents to希尔伯特空间上任何操作员的数值范围通常。第二个结果是,通过使用上述结果,每个运算符的数值范围在元素产生的von Neumann代数的 ^* - 同构下是不变的。希尔伯特空间。此外,从完全积极的角度来看,Miura以矩阵有序的标准形式被证明是希尔伯特 - 史密特类经营者的多数化财产。 Miura还证明,不必要的 ^* - 在矩阵下订购的von Neumann代数与基础希尔伯特空间之间的完全订单同构之间的同态同构,通过在Schmitt-Wittstock的工作中应用非交通性L2空间的表征相互对应。特别是,保存同态的a ^*对应于正交分解同态。较少的
项目成果
期刊论文数量(73)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Miura, K.Nishiyama: "Complete orthogonal decomposition homomorphisms between matrix ordered Hilbert spaces"Proceedings of the American Mathematical Society. 129. 1137-1141 (2001)
Y.Miura、K.Nishiyama:“矩阵有序希尔伯特空间之间的完全正交分解同态”美国数学会会刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Cho and K.Tanahashi: "Putnam's inequality for log-hyponormal operators"Integral Equations and Operator Theory. (to appear).
M.Cho 和 K.Tanahashi:“对数次正规算子的普特南不等式”积分方程和算子理论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Tanahashi, A.Uchiyama, M.Uchiyama: "Notes on the Heinz-Kato-Furuta-Uchiyama inequality"京都大学数理解析研究所講究録. 1259. 79-86 (2002)
K.Tanahashi、A.Uchiyama、M.Uchiyama:“Heinz-Kato-Furuta-Uchiyama 不等式的注释”京都大学数学科学研究所 Kokyuroku。1259. 79-86 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Cho, K.Tanahashi: "Spectral relations for Aluthge transform"Scientiac Mathematicae Japonicae. 55. 113-119 (2002)
M.Cho,K.Tanahashi:“Aluthge 变换的谱关系”Scientiac Mathematicae Japonicae。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Miura: "Remarks on selfdual cones"京都大学数理解析研究所講究録. 1259. 150-164 (2002)
M.Miura:《关于自对偶锥体的评论》京都大学数学科学研究所 Kokyuroku 1259. 150-164 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAHASHI Kotaro其他文献
TANAHASHI Kotaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAHASHI Kotaro', 18)}}的其他基金
Operator theory induced by operator inequalities
由算子不等式导出的算子理论
- 批准号:
20540184 - 财政年份:2008
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of operator inequalities and log-hyponormal operators
算子不等式和对数次正规算子研究
- 批准号:
15540180 - 财政年份:2003
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Furuta inequality on operator theory
算子理论的Furuta不等式
- 批准号:
10640185 - 财政年份:1998
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research of operator inequalities and log-hyponormal operators
算子不等式和对数次正规算子研究
- 批准号:
15540180 - 财政年份:2003
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive Study of Real Analysis and Functional Analysis
实分析与泛函分析综合研究
- 批准号:
11304009 - 财政年份:1999
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Establishment of operator inequalities by using computers and their applications
利用计算机及其应用建立算子不等式
- 批准号:
11640186 - 财政年份:1999
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Furuta inequality on operator theory
算子理论的Furuta不等式
- 批准号:
10640185 - 财政年份:1998
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)