Nonlinear functional analysis and convex analysis problem by using fixed point theory

使用不动点理论的非线性泛函分析和凸分析问题

基本信息

  • 批准号:
    12640157
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

We studied some problems concerning nonlinear functional analysis and convex analysis by using fixed point theory. We first considered iteration schemes given by an infinite family of nonexpansive mappings in Hilbert spaces or Banach spaces and then proved strong convergence theorems for the family of nonexpansive mappings. Using these results, we also considered the feasibility problem of finding a common fixed point of infinite nonexpansive mappings. Next, we introduced two proximal point algorithms suggested by the iterative schemes introduced by Solodov and Svaiter in order to find a solution of $v \in T^∧{-1}0$, where $T$ is a maximal monotone operator. Main results were established by using metric projections and generalized projections in the case of the strong convergence. We also applied these results to find a minimizer of a lower semicontinuous convex function in a Banach space. Finally, we introduced iteration schemes of finding a common element of the set of fixed points of nonexpansive mappings and the set of solutions of the variational inequality for inverse-strongly-monotone mappings. Using these results, we considered the problem of finding a common element of the set of zeros of a maximal monotone mapping and the set of zeros of an inverse-strongly-monotone mapping.
我们利用不动点理论研究了非线性泛函分析和凸分析的一些问题,首先考虑了希尔伯特空间或巴纳赫空间中无限族非扩张映射给出的迭代方案,然后证明了该族非扩张映射的强收敛定理。这些结果,我们还考虑了寻找无限非扩张映射的公共不动点的可行性问题接下来,我们介绍了由 Solodov 和 提出的迭代方案提出的两种近点算法。 Svaiter 为了找到 $v \in T^∧{-1}0$ 的解,其中 $T$ 是最大单调算子,主要结果是在强收敛的情况下使用度量投影和广义投影建立的。我们还应用这些结果来寻找 Banach 空间中的下半连续凸函数的最小化函数,最后,我们引入了寻找非扩张映射不动点集合的公共元素的迭代方案,并且。逆强单调映射的变分不等式的解集使用这些结果,我们考虑了寻找最大单调映射的零集和逆强单调映射的零集的公共元素的问题。单调映射。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
W.Takahashi: "Weak and strong convergence of approximating fixed points and applications"Nonlinear Analysis. 47・7. 4981-4993 (2001)
W. Takahashi:“近似不动点的弱收敛和强收敛”47・7 4981-4993(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Amemiya, W.Takahashi: "Fixed point theorems for fuzzy mappings in complete metricspaces"Fuzzy Sets and Systems. 125・2. 253-260 (2002)
M.Amemiya,W.Takahashi:“完整度量空间中模糊映射的不动点定理”模糊集和系统125・2(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Wataru TAKAHASHI and Sho ji KAMIMURA: "Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces"J.Approximation Theory. 106-2. 226-240 (2000)
Wataru TAKAHASHI 和 Sho ji KAMIMURA:“希尔伯特空间中最大单调算子的近似解”J.近似理论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Shimoji, W.Takahashi: "Strong convergence to common fixed points of infinite nonexpansive mappings and applications"Taiwanese Journal of Mathematics. 5・2. 387-404 (2001)
K.Shimoji、W.Takahashi:“无限非扩张映射的公共不动点的强收敛性及其应用”台湾数学杂志 5・2(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Taniguchi: "Instability of planar traveling fronts in bistable reaction-diffusion systems"Discrete and Continuous Dynamical Systems, Ser. B. 3-1. 21-44 (2002)
M. Taniguchi:“双稳态反应扩散系统中平面行进前沿的不稳定性”离散和连续动力系统,系列。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASHI Wataru其他文献

TAKAHASHI Wataru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASHI Wataru', 18)}}的其他基金

A Manual for Supporters of Extensive Japanese Reading
日语泛读支持者手册
  • 批准号:
    19K20963
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on New Fixed Point Theory and Convex Analysis
基于新不动点理论和凸分析的非线性泛函分析及非线性问题研究
  • 批准号:
    15K04906
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of a genetic locus and dynamic analysis of genes for cellulose biosynthesis in ryegrasses
黑麦草纤维素生物合成基因位点鉴定及动态分析
  • 批准号:
    26450026
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monetary Policy of Tokugawa Shogunate: Empirical and Theoretical Analysis based on Historical Evidence
德川幕府的货币政策:基于历史证据的实证和理论分析
  • 批准号:
    25285100
  • 财政年份:
    2013
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析和非线性问题的研究
  • 批准号:
    23540188
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Development of Preservice Teacher Education Curriculum to Teach Foreign Language Activities in Elementary School Classrooms
小学课堂外语教学的职前教师教育课程开发
  • 批准号:
    23652134
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Molecular genetic study of cellulose biosynthesis mutant in Italian ryegrass
意大利黑麦草纤维素生物合成突变体的分子遗传学研究
  • 批准号:
    23580027
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Study of Nonlinear Functional Analysis and Convex Analysis and its Applications Based on Optimization Theory and Fixed Point Theory
基于最优化理论和不动点理论的非线性泛函分析和凸分析及其应用研究
  • 批准号:
    19540167
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear functional analysis and nonlinear problems by using fixed point theory
使用不动点理论进行非线性泛函分析和非线性问题
  • 批准号:
    15540157
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A UNIX-based Analysis of Data-processing for English Linguistics
基于 UNIX 的英语语言学数据处理分析
  • 批准号:
    09610475
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Banach空间上非交换的非线性算子拓扑半群的遍历理论及其应用
  • 批准号:
    12371140
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于广义分数阶算子的火成岩非线性蠕变本构模型及动力学研究
  • 批准号:
    12372010
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
可见光通信深度学习非线性补偿技术原生基函数及专用算子研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
与分数阶Laplace算子相关的非线性方程解的定性性质
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一类回火分数阶p-Laplacian算子的非线性问题研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Deep Neural Network Machine Learning for Oscillatory Navier-Stokes Flows and Nonlinear Operators, and High Dimensional Fokker-Planck Equations
用于振荡纳维-斯托克斯流和非线性算子以及高维福克-普朗克方程的深度神经网络机器学习
  • 批准号:
    2207449
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
  • 批准号:
    21K21285
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Zero point problems of maximal monotone operators from the view of nonlinear projections
非线性投影视角下的最大单调算子零点问题
  • 批准号:
    24740075
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了