Numerical approach for bifurcation of nonlinear problem
非线性问题分岔的数值方法
基本信息
- 批准号:12640142
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this study is to confirm whether non-symmetric solutions exist or not on the bifurcation problem of the surface water waves and, if exist, to see their bifurcation structures. The existence of non-symmetric solutions has not yet been proved mathematically. J. A. Zufiria ('87, '88) gave non-symmetric solutions numerically, which are mode (1, 2, 3) waves in both cases of infinite and finite depth of fluid. However their non-symmetricities are so minute and their bifurcation structures are obscure. So we would like to investigate his results by our own algorithms.We carried out the following schemes :1. We continue to compute by modifying our programs, which we have used for the bifurcation problem of irrotational waves or rotational waves.2. If we fail in the above computation, we try to do another approach.Regarding 1. we have not yet obtained any non-symmetric solutions, but it is beforehand to conclude. We need much more strict and profound simulations since it is a very delicate problem.This year, we study mainly another approach of 2. It is to study the interfacial progressive wave problem that is a generalization of the surface wave problem. In the case of inter facial waves, it is proved that there exist triple bifurcation points of mode (l, m, n). It might be possible to interpret Zufiria's non-symmetric waves of mode (1, 3, 6) as the effect of the triple bifurcation of inter facial waves, because the surface wave problem is embedded in the interfacial problem. We programd codes to compute the interfacial wave problem and simulated some bifurcation structures.We have not yet obtained any non-symmetric solution by this approach. However it is our results to see some changes of bifurcation structure of inter facial waves as the key parameter varies. It would be interesting to study structures around the triple bifurcation and it is still our target.
这项研究的目的是确认是否存在非对称溶液在地表水波的分叉问题上,并且(如果存在)查看其分叉结构。非对称解决方案的存在尚未在数学上证明。 J. A. Zufiria('87,88)在数值上给出了非对称溶液,在液体的无限和有限深度中,它是模式(1、2、3)波的模式(1、2、3)。但是,它们的非对称性是如此微小,它们的分叉结构晦涩难懂。因此,我们想通过自己的算法调查他的结果。我们执行了以下方案:1。我们继续通过修改程序来计算,该程序已将其用于无旋波或旋转波的分叉问题2。如果我们在上述计算中失败,我们会尝试采用另一种方法。对1。我们尚未获得任何非对称解决方案,但事先是结论。我们需要更严格和深刻的模拟,因为这是一个非常微妙的问题。今年,我们主要研究2种方法。这是研究表面波问题的概括的界面渐进波问题。在面部间波的情况下,证明存在模式的三分叉点(L,M,N)。可以将Zufiria的非对称模式(1、3、6)的非对称波解释为面部间波的三分叉的效果,因为表面波问题嵌入了界面问题中。我们编程代码来计算界面波问题并模拟一些分叉结构。我们尚未通过这种方法获得任何非对称解决方案。但是,随着关键参数的变化,面部波的分叉结构的一些变化是我们的结果。研究围绕三重分叉的结构将很有趣,这仍然是我们的目标。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Shoji: "Bifurcation of rotational water waves, FREE BOUNDARY PROBLEMS : Theory and Application II"GAKUTO International Series 19. 418-430 (2000)
M. Shoji:“旋转水波的分叉,自由边界问题:理论与应用 II”GAKUTO 国际系列 19. 418-430 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shoji: "Bifurcation of rotational water waves"GAKUTO International Series. 19. 418-430 (2000)
M.Shoji:“旋转水波的分叉”GAKUTO国际系列。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Shoji: "Numerical solutions of the bifurcation problem of intefacial progressive water waves"the Natural Science Report of the Ochanomizu University. (to appear).
M.Shoji:“界面前进水波分叉问题的数值解”御茶水女子大学自然科学报告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Okamoto & M. Shoji: "The Mathematical Theory of Permanent Progressive Water-Waves"World Scientific. (2001)
H·冈本
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Okamoto, M.Shoji: "The Mathematical Theory of Permanent Progressive Water-Waves"World Scientific. 229 (2001)
H.Okamoto,M.Shoji:“永久渐进水波的数学理论”世界科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHOJI Mayumi其他文献
SHOJI Mayumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHOJI Mayumi', 18)}}的其他基金
Numerical analysis of rotational flows of two vortical layers
两个涡层旋转流的数值分析
- 批准号:
18K03429 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical approach for bifurcation of nonlinear problem
非线性问题分岔的数值方法
- 批准号:
14540140 - 财政年份:2002
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical approach for bifurcation of nonlinear problem
非线性问题分岔的数值方法
- 批准号:
09640295 - 财政年份:1997
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
高速水稻插秧机防水浪机理及其工程措施研究
- 批准号:59375214
- 批准年份:1993
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
風水洞における自由表面影響を考慮した海上風境界層制御に関する実験的研究
考虑自由面效应的海上风边界层控制风洞试验研究
- 批准号:
20K04952 - 财政年份:2020
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the basic research on 3-D and real time measurement method of gas and liqid interface.
气液界面三维及实时测量方法基础研究。
- 批准号:
23360395 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a 3D numerical wind wave tank using an explicit method of water surface location
使用水面定位的显式方法开发 3D 数值风浪池
- 批准号:
20560482 - 财政年份:2008
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the relationship between microscale wave breaking and enhanced air-water interfacial exchange rates of low solubility gases
定义微尺度波浪破碎与低溶解度气体增强的空气-水界面交换率之间的关系
- 批准号:
DP0452505 - 财政年份:2004
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Projects
Adsorption behavior of protein, porphyrins and lipid onto the oil/water interface -Estimation with the laser evanescent wave at the interface.
蛋白质、卟啉和脂质在油/水界面上的吸附行为-用界面处的激光倏逝波进行估计。
- 批准号:
14340221 - 财政年份:2002
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)