A STUDY ON THE GEOMETRY OF MODULI SPACES
模空间几何的研究
基本信息
- 批准号:12304001
- 负责人:
- 金额:$ 19.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Certain compactification of moduli space of abelian varieties was studied as well as moduli spaces of G-orbits for a finite subgroup G of SL(2,C) and SL(3,C). The main issues we have in mind are as follows (a) Study of a resolution of singularity of the quotient C^3/G as a moduli space (b) study of Kempf stability and compactification of moduli spaces (c) A canonical ompactification SQ_<g,N> of the moduli A_<g,N> over Z[1/N] of abelian varieties and related moduli.There were remarkable progresses on each subject during this project. The main results are as follows : first there was a remarkable progress in the study on Hilbert schemes of G-orbits. We copuld give a new explanation to the phenomenon of McKay correspondence which was discovered over twenty years, and extending it to the three dimensional case, we obtained a lot of new resluts. The head investigator (Nakamura) proposed a generalization of McKay correspondence to the three or higher dimension, which was follows by many related results. In this sense this project payed a substantial role in the history of studying McKay correspondence. Among other things Nakamura showed that the Hilbert scheme of G-orbits is the canonical resolution of singularities of the quotient C^3/G. This is a new discovery which has never been observed, against the common sense in minimal model theory. Therefore this discovery has been accepted by specialists with surprise. Another substantial contribution of this project is that we constructed a new canonical compactification of moduli space A_<g,N> of abelian varieties This compactification is projective, it enjoys a desirable property as a compactification. From the stabdpoint of invariant theory, this compactification is ust that by stability. In this sense it is orthodox and is uniquely characterized by this property
研究了Abelian品种模量空间的某些紧凑型以及用于SL(2,C)和SL(3,C)的有限亚组G的G-Orbits的模量空间。我们想到的主要问题如下(a)研究商的奇异性C^3/g作为模量空间的分辨率(b)对Moduli空间的KEMPF稳定性和压实的研究(c)规范化的sq_ <g,n> abelian verian and abelian and abelian and abelian and abelian nibie sq_ <g,n]在这个项目中的每个主题。主要结果如下:首先,关于G-Orbits希尔伯特计划的研究取得了显着进展。我们对二十年来发现的McKay通信现象给出了新的解释,并将其扩展到三维情况,我们获得了许多新的改造。首席研究员(Nakamura)提出了McKay对应于三个或更高维度的对应关系的概括,这是许多相关结果所遵循的。从这个意义上讲,这个项目在研究麦凯信函的历史中发挥了重要作用。 Nakamura表明,G-Orbits的Hilbert方案是对商C^3/g的奇异性的规范分辨率。这是一个从未观察到的新发现,反对最小模型理论的常识。因此,这一发现已被惊喜的专家接受。该项目的另一个实质性贡献是,我们建立了一种新的典型的压实,用于模量空间a_ <g,n> abelian品种的这种压缩是射影的,它具有理想的特性作为紧凑型。从不变理论的稳定点来看,这种压实是通过稳定性的。从这个意义上说,它是东正教,是由此特性的独特特征
项目成果
期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Katsura: "Formal Brauer groups and a stratification of the moduli of abelian surfaces"Progress in Math.. 195. 185-202 (2001)
T.Katsura:“形式布劳尔群和阿贝尔曲面模的分层”数学进展.. 195. 185-202 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Nakamura: "Coinvariant algebras of finite subgroups of SL(3,C)"Canadian Jour.Mathematics. (印刷中).
I. Nakamura:“SL(3,C) 有限子群的协变代数”加拿大数学杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kaoru Ono: "Space of geodesics of Zoll 3-spheres, submitted to the proceedings of JAMI conference at Johns Hopkins University March 1999"In press in Advanced Studies in Pure Mathematics.
Kaoru Ono:“Zoll 3 球体的测地线空间,提交给 1999 年 3 月在约翰·霍普金斯大学举办的 JAMI 会议论文集”,发表在《纯数学高级研究》上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kaoru Ono: "Space of geodesics on Zoll three spheres"Advanced Studies in Pure Math.. 34. 237-243 (2002)
小野薰:“佐尔三球体上的测地线空间”纯数学高级研究.. 34. 237-243 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Iku Nakamura: "The moduli space of elliptic curves with Heisenberg structure"Proceedings of Texel conference 1999, Progress in Math., Birkh\" auser. 195. 299-324 (2001)
Iku Nakamura:“具有海森堡结构的椭圆曲线的模空间”Proceedings of Texel Conference 1999, Progress in Math., Birkh" auser. 195. 299-324 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAMURA Iku其他文献
NAKAMURA Iku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAMURA Iku', 18)}}的其他基金
The global geometry of moduli spaoes
模数 spaoes 的全局几何
- 批准号:
16204001 - 财政年份:2004
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of singularities and geometry by means of representation theory
通过表示论研究奇点和几何
- 批准号:
08404001 - 财政年份:1996
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on Complex Manifolds
复流形研究
- 批准号:
06452001 - 财政年份:1994
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似国自然基金
碳纤维/树脂复合材料模量匹配与梯度界面的协同效应及强韧化机制研究
- 批准号:52373080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于丝素蛋白多孔凝胶的低模量柔性脑电极研究
- 批准号:62301555
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高模量高塑性(CNTs+AlN)/AZ91复合材料的制备及性能调控机理研究
- 批准号:52301198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑颗粒特征的粗粒土初始剪切模量宏细观分析及混合驱动模型研究
- 批准号:52309173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高回弹高模量耐疲劳离子皮肤的结构和性能研究
- 批准号:22305033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
- 批准号:
22K03261 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
- 批准号:
17K05188 - 财政年份:2017
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The global geometry of moduli spaoes
模数 spaoes 的全局几何
- 批准号:
16204001 - 财政年份:2004
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Root system construction of a compactification of the moduli space of rational surfaces
有理曲面模空间紧化的根系构造
- 批准号:
14540023 - 财政年份:2002
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Degeneration of closed Riemann surfaces and limits of Jacobi varieties
封闭黎曼曲面的退化和雅可比簇的极限
- 批准号:
14540163 - 财政年份:2002
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)